Description
A die simulator generates a random number from 1 to 6 for each roll. You introduced a constraint to the generator such that it cannot roll the number i more than rollMax[i] (1-indexed) consecutive times.
Given an array of integers rollMax and an integer n, return the number of distinct sequences that can be obtained with exact n rolls.
Two sequences are considered different if at least one element differs from each other. Since the answer may be too large, return it modulo 10^9 + 7.
Example 1:
Input: n = 2, rollMax = [1,1,2,2,2,3]
Output: 34
Explanation: There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34.
Example 2:
Input: n = 2, rollMax = [1,1,1,1,1,1]
Output: 30
Example 3:
Input: n = 3, rollMax = [1,1,1,2,2,3]
Output: 181
Constraints:
- 1 <= n <= 5000
- rollMax.length == 6
- 1 <= rollMax[i] <= 15
分析
题目的意思是:这道题的意思是置n次骰子,骰子有6个点数,其中rollMax规定每个点最多连续置出的点数。这道题最直接的方式是dp,但是比较麻烦,因为加了一个连续置出的点数的限制,思路我参考了一下别人的。
- dp[i][j][k] 表示 长度为i,以k个j结尾的骰子序列,一共有多少种. 0 <= i <n, 0 <= j < 6, 1 <= k <= rollMax[j]
- 如果以1个j结尾(k = 1):
for p in range(6):
if p != j:
f[i][j][k] += (sum(f[i-1][p]) % MOD)
- 如果以k个j结尾(k > 1):
f[i][j][k] = f[i-1][j][k-1]
- 最终的结果是sum(dp[n-1]),因为是三位数组,所以求和是双层循环。
这道题很难想到,我把解答过程记录下来慢慢欣赏
代码
class Solution:
def dieSimulator(self, n: int, rollMax: List[int]) -> int:
MOD=10**9+7
dp=[[[0]*(max(rollMax)+1) for i in range(6)] for j in range(n)]
for i in range(6):
dp[0][i][1]=1 # 第1次掷骰子,点数为i且连续一次
for i in range(1,n): # 第i次掷骰子,0-start
for j in range(6): # 第i次掷出j点,j=0~5表示1-6点
for k in range(1,rollMax[j]+1):
if(k==1):
for p in range(6):
if(p!=j):
dp[i][j][k]+=sum(dp[i-1][p])%MOD
else:
dp[i][j][k]=dp[i-1][j][k-1]
res=0
for j in range(6):
for k in range(1,rollMax[j]+1):
res=(res+dp[n-1][j][k])%MOD
return res