IELTS12 TEST7 it is necessary to spend large sums of money on constructing new railway lines

本文探讨了在一些国家中关于是否应该投入大量资金用于新建城市间的高速铁路线路,还是改进现有的公共交通系统的两种观点。文章认为,从国家发展战略的角度看,发展高速铁路有利于促进经济发展,但在某些情况下,如城市内部交通落后时,则应优先改善城市内的交通设施。
摘要由CSDN通过智能技术生成

IELTS12 Test 7的话题,主要是探讨城市是否把大量的资金投入到建造高速铁炉上,还是把大量资金投入到自身城市交通的建设上。

我的观点就是,从国家战略和城际发展的角度,我们应该大力发展城际间的高速铁炉,因为其经济效益不可估量。 但是也要根据情况,如果城市本身城际交通已经很好了,而城市内部的交通却落后,像以前的武汉,这个时候,我们的重点应该是把主要资金投入到自身城市建设上来。

Topic

In a number of countries, some people think it is necessary to spend large sums of money on constructing new railway lines for very fast trains between cities. Others believe the money should be spent on improving existing public transport.


Discuss both these views and give your own opinion.

My writing

I think everyone has its own reasons to either construct new railway lines or improve existing public transport. If we really want to put it into actions, we should consider various aspects of issues. I quite agree with the point that we must make decisions according to situations.

Spending plenty of money on constructing new railway lines between cities is necessary. Usually, we can promote the development of economy by improving transportation systems between cities. If a city has a good resource of tourism, the city can put much effort into developing tourism, it will be helpful if there are loads of high speed trains between cities, which will stimulate the motivations of visitors to travel to this area, in some cases, it will increase the incomes of the local citizens and create more fortune. It is not only good for tourism, it may cause a series of positive chain reactions to many aspects about the city. What’s more, from the point of a country, governments tend to interconnect each city, an excellent transportation system is vital from the point of whatever the strategy of a nation or the needs to clear away obstacles of development. Further more, some cities are surrounded with mountains, it may be more significant to construct railway lines.

If the city has already had a developed transportation system to satisfy current needs, it will be more meaningful if large sums of money are spent improving existing public transport. For example, Wuhan used to be famous for its important geographical position, and it has a developed transportation network right now, but its intrinsic public transport falls behind, there are always traffic congestion and crowded people, developing its own public transport seems more meaningful than developing railway new railway between cities.  

Whatever opinion you choose, you should make decisions according to physical truth. If you are the decision maker, you may get a good reputation if you follow my advice.
This is a classic problem of finding the number of subsets of a given set with a certain property. In this case, we want to find the number of subsets of the set {0,1,2,...,k-1} such that the sum of the elements in the subset is less than or equal to n. We can use dynamic programming to solve this problem efficiently. Let dp[i][j] be the number of ways to choose a subset of the first i elements of the set {0,1,2,...,k-1} such that the sum of the elements in the subset is exactly j. Then the answer to the problem is the sum of dp[k][0] to dp[k][n]. The base case is dp[0][0]=1, since there is exactly one way to choose an empty subset with sum zero. For each i from 1 to k, we can either choose the i-th element or not. If we choose it, then we need to find the number of ways to choose a subset of the first i-1 elements with sum j-2i. If we do not choose it, then we need to find the number of ways to choose a subset of the first i-1 elements with sum j. Therefore, dp[i][j] = dp[i-1][j] + dp[i-1][j-2i], if j>=2i dp[i][j] = dp[i-1][j], otherwise The final answer is the sum of dp[k][0] to dp[k][n]. The time complexity of this algorithm is O(kn). Here is the Python code to solve the problem: ```python t = int(input()) for _ in range(t): n, k = map(int, input().split()) dp = [[0] * (n+1) for _ in range(k+1)] dp[0][0] = 1 for i in range(1, k+1): for j in range(n+1): dp[i][j] = dp[i-1][j] if j >= 2**i: dp[i][j] += dp[i-1][j-2**i] print(sum(dp[k])) ``` I hope this helps! Let me know if you have any more questions.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值