Description
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.
Example 1:
Input: [1,2,3,4,5]
Output: true
Example 2:
Input: [5,4,3,2,1]
Output: false
分析
题目的意思是:给定一个数组,判断是否有长度为3个以上的递增数组存在。
- 使用两个指针m1和m2,初始化为整型最大值;
- 我们遍历数组,如果m1大于等于当前数字,则将当前数字赋给m1;
- 如果m1小于当前数字且m2大于等于当前数字,那么将当前数字赋给m2;
- 一旦m2被更新了,说明一定会有一个数小于m2,那么我们就成功的组成了一个长度为2的递增子序列,所以我们一旦遍历到比m2还大的数,我们直接返回ture。
- 如果我们遇到比m1小的数,还是要更新m1,有可能的话也要更新m2为更小的值,毕竟m2的值越小,能组成长度为3的递增序列的可能性越大。
代码
class Solution {
public:
bool increasingTriplet(vector<int>& nums) {
int m1=INT_MAX;
int m2=INT_MAX;
for(auto a:nums){
if(m1>=a){
m1=a;
}else if(m2>=a){
m2=a;
}else return true;
}
return false;
}
};