Description
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
分析
题目的意思是:找出二叉树中的第k小的值。
-解法当然是递归,中序遍历是左中右,刚好按照中序遍历,count到第k个就行了。
C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int ans=0;
int count=0;
solve(root,count,ans,k);
return ans;
}
void solve(TreeNode* root,int& count,int& ans,int k){
if(!root){
return ;
}
solve(root->left,count,ans,k);
count++;
if(count==k){
ans=root->val;
return ;
}
solve(root->right,count,ans,k);
}
};
Python
这道题如果能想到中序遍历,就能做出来。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
res = 0
count=0
def solve(self, root, k):
if root is None:
return
self.solve(root.left,k)
self.count+=1
if self.count==k:
self.res=root.val
return
self.solve(root.right,k)
def kthSmallest(self, root: Optional[TreeNode], k: int) -> int:
# in order, count k
self.solve(root,k)
return self.res