Description
Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
- Each of the array element will not exceed 100.
- The array size will not exceed 200.
Example 1:
Input:
[1, 5, 11, 5]
Output:
true
Explanation:
The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input:
[1, 2, 3, 5]
Output:
false
Explanation:
The array cannot be partitioned into equal sum subsets.
分析
题目的意思是:给定一个数组,求这个数组能不能分成两个非空子集合,使得两个子集合的元素之和相同。
- 原数组所有数字和一定是偶数,不然根本无法拆成两个和相同的子集合,那么我们只需要算出原数组的数字之和,然后除以2,就是我们的target.
- 那么问题就转换为能不能找到一个非空子集合,使得其数字之和为target。
- 遍历所有子集合,算和,但是这种方法无法通过OJ的大数据集合。于是就可以用动态规划;dp[i]表示数字i是否是原数组的任意个子集合之和,那么最后只需要返回dp[target]就行了。
- 初始化dp[0]为true,由于题目中限制了所有数字为正数,就不用担心会出现和为0或者负数的情况。
- 关键问题就是要找出状态转移方程,首先遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是状态转移方程如下:
dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)
C++ 代码
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum=accumulate(nums.begin(),nums.end(),0);
if(sum&1){
return false;
}
sum=sum/2;
vector<bool> dp(sum+1,false);
dp[0]=true;
for(int x:nums){
for(int i=sum;i>=x;i--){
dp[i]=dp[i]||dp[i-x];
}
}
return dp[sum];
}
};
Python 解法一
class Solution:
def canPartition(self, nums: List[int]) -> bool:
sum_val=0
nums.sort()
for i in range(len(nums)):
sum_val+=nums[i]
if(sum_val%2==1):
return False
target=sum_val//2
dp=[False]*(target+1)
dp[0]=True
for num in nums:
for i in range(target,num-1,-1):
dp[i]=dp[i] or dp[i-num]
return dp[target]
Python 解法二
dp[i][j]表示从数组的[0,i]下标范围内选取若干个正整数(可以是0个),是否存在一种选取方案使得选取的正整数和为j,初始化的dp全为False。
边界条件:
- 如果不选取任何正整数,则被选取的正整数之和为0。因此对于0<=j<n,都有dp[i][0]=true
- 当i==0的时候,只有一个正整数nums[0]可以被选取,因此dp[0][nums[0]]=true
对于i>0 和j>0的情况:有选和不选两种情况,如下图所示
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
max_val = max(nums)
if target %2 ==1:
return False
target = target//2
if max_val>target:
return False
dp=[[False]*(target+1) for i in range(len(nums))]
dp[0][0]=True
dp[0][nums[0]]=True
for i in range(len(nums)):
for j in range(target+1):
if j==0:
dp[i][j]=True
elif j<nums[i]:
dp[i][j]=dp[i-1][j]
else:
dp[i][j]=dp[i-1][j] or dp[i-1][j-nums[i]]
return dp[-1][target]
下面的解法不需要特别注意初始值dp[0][nums[0]]的设计,我还是比较推荐的:
class Solution:
def canPartition(self, nums: List[int]) -> bool:
target = sum(nums)
max_val = max(nums)
if target%2==1:
return False
target = target//2
if max_val>target:
return False
n = len(nums)
dp = [[False]*(target+1) for _ in range(n+1)]
for i in range(n+1):
dp[i][0]=True
for i in range(1,n+1):
for j in range(target+1):
if j<nums[i-1]:
dp[i][j]=dp[i-1][j]
else:
dp[i][j]=dp[i-1][j]|dp[i-1][j-nums[i-1]]
return dp[n][target]
Python 解法三
class Solution:
def canPartition(self, nums: List[int]) -> bool:
# 要求找到元素和为sum/2的子集
if sum(nums)%2>0:
return False
target = sum(nums)//2
# 初始化dp数组
dp =[[0 for _ in range(target+1)] for _ in range(len(nums))]
# 第0个物品初始化
for j in range(nums[0],target+1):
dp[0][j]=nums[0]
# 剩下的物品根据递推公式进行推导
for i in range(len(nums)):
for j in range(target+1):
if j<nums[i]:
dp[i][j]=dp[i-1][j]
else:
dp[i][j]=max(dp[i-1][j],dp[i-1][j-nums[i]]+nums[i])
# 判断dp的最后一个元素是否等于targe可以推导能否划分成两个相等的子集
return dp[-1][-1]==target
参考文献
[编程题]palindrome-partitioning
[LeetCode] Partition Equal Subset Sum 相同子集和分割