题目链接:点击打开链接
题目思路:对于这道题,我们容易知道各个参数对应着杨辉三角的系数,所以问题就是求某一层杨辉三角的系数是否能整除m,也就是c(n,k),那么如何去判断呢,如果直接算出
组合数,虽然是可以但是需要高精度,十分麻烦,所以我们需要一些技巧去求是否为m的倍数,根据唯一分解定理,我们知道如果一个数的质因子的指数个数大于等于另一个数的所有质因子指数个数,那么就是可以的,所以这道题我们可以用唯一分解定理来判断,为什么呢,我们观察组合数递推式C(n,k) = (n-k+1)/k*c(n,k-1),观察这个式子,我们可以发现
每一次新增加的数是前面那部分所带来的影向,所以对于当前的c(n,k),我们只用考虑(n-k+1)/k所带来的影响,再加上之前的指数个数就行了,只样子也不用算出每个组合数的具体的值,另外我们这个判断的时候有一个技巧就是对于m的每一个质因子去枚举所有的组合数,这样子非常方便,
ac代码:
#include<bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = 1e5+5;
int m,n;
int isprime[maxn];
int prime[maxn];
pair<int,int >fac[maxn];
int pos1 = 0;
int pos2;
int ans[maxn];
int ans2[maxn];
void getprime()
{
for(int i = 2;i<=maxn;i++){
if(isprime[i]==0){
for(int j = i*2;j<=maxn;j+=i){
isprime[j] = 1;
}
}
}
for(int i = 2;i<=maxn;i++){
if(isprime[i]==0){
prime[pos1++] = i;
//cout<<i<<' '<<pos1<<endl;
}
}
}
void getnum()
{
int x = m;
//cout<<m<<endl;
pos2 = 0;
//cout<<"fuck"<<endl;
for(int i = 0;i<pos1;i++){
// cout<<prime[i]<<endl;
// cout<<"fuck"<<endl;
// cout<<"gan"<<endl;
int cnt = 0;
if(prime[i]*prime[i]>m)
break;
while(x>1&&x%prime[i]==0){
cnt++;
x/=prime[i];
}
if(cnt>0){
fac[pos2].first = prime[i];
fac[pos2++].second = cnt;
}
}
if(x!=1){
fac[pos2].first = x;
fac[pos2++].second = 1;
}
}
int main()
{
//freopen("out.txt","w",stdout);
getprime();
while(~scanf("%d%d",&n,&m))
{
getnum();
memset(ans,0,sizeof(ans));
ans[0] = 1;
ans[n] = 1;
for(int i = 0;i < pos2;i++){
int p = fac[i].first;
int cnt = 0;
for(int j = 1;j<=n-1;j++){
int tmp = n-j;
while(tmp>1&&tmp%p==0){
tmp/=p;
cnt++;
}
tmp = j;
while(tmp>1&&tmp%p==0){
tmp/=p;
cnt--;
}
// cout<<cnt<<' '<<p<<' '<<j<<endl;
if(cnt<fac[i].second){
ans[j] = 1;
}
}
}
int p = 0;
for(int i = 0;i<=n;i++){
if(ans[i]==0){
ans2[p++] = i+1;
}
}
cout<<p<<endl;
for(int i = 0;i<p;i++){
printf("%d",ans2[i]);
if(i<p-1){
printf(" ");
}
}
cout<<endl;
}
}