Power of Matrix UVA - 11149(矩阵快速幂+二分或许叫倍增优化)

该博客介绍了如何使用矩阵快速幂和二分优化方法解决UVA 11149问题,即求解矩阵A的幂次和。通过提取公因子并利用递归优化(倍增),将复杂度降低到log^2k*1600,从而避免超时。文章提供了关键思路和AC代码。
摘要由CSDN通过智能技术生成

题目链接:点击打开链接


题目大意:求矩阵A+A^2+A^3....+A^k

题目思路:一开始也没什么思路,但是看到一篇博客。。。

今天我们学习如何有效地求表达式的值。对于这个问题,用二分解决比较好。

 

(1)时,

(2)时,那么有

    

(3)时,那么有

   

然后就照着撸就行了...

这里的关键就是提取的公因子,如果我们直接去计算的话那么显然是会超时的,那我们从式子入手会发现上述的提取方法,接下来会发现每一次的变化规则相同,其实就可以递归优化一下,也可以叫倍增,复杂度为log^2k*1600

ac代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<sstream>
#include<cmath>
#define LL long long
#define INF 0x3f3f3f3f
#define INFLL 0X3f3f3f3f3f3f3f
#define lson rt<<1
#define rson rt<<1|1
using namespace std;
int n,k;
struct mat
{
   int a[45][45];
    mat()
    {
        memset(a,0,sizeof(mat));
    }
};
mat mutil(mat a,mat b)
{
    mat ret;
    for(int i = 0;i<n;i++){
        for(int j = 0;j<n;j++){
            for(int k = 0;k<n;k++){
                ret.a[i][k] = (ret.a[i][k]%10+a.a[i][j]%10*b.a[j][k]%10)%10;
            }
        }
    }
    return ret;
}
mat add(mat a,mat b)
{
    for(int i = 0;i<n;i++){
        for(int j = 0;j<n;j++){
            a.a[i][j] = (a.a[i][j]%10+b.a[i][j]%10)%10;
        }
    }
    return a;
}
mat pow(mat a,int nn){
    mat ret;
    for(int i = 0;i<n;i++){
        for(int j = 0;j<n;j++){
            ret.a[i][j] = (i==j);
        }
    }
    while(nn){
        if(nn&1) ret = mutil(a,ret);
        a = mutil(a,a);
        nn >>=1;
    }
    return ret;

}
mat solve(mat A,int nn)
{
    if(nn==1)
        return A;
    mat ret = solve(A,nn/2);
    if(nn%2==1){
        mat tmp = pow(A,nn/2+1);
        ret = add(ret,mutil(ret,tmp));
        ret = add(ret,tmp);
    }
    else{
        mat tmp = pow(A,nn/2);
        ret = add(ret,mutil(ret,tmp));
    }
    return ret;
}
int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        if(!n)
            break;
        mat ans;
        for(int i = 0;i<n;i++){
            for(int j = 0;j<n;j++){
                scanf("%d",&ans.a[i][j]);
                ans.a[i][j] %= 10;
            }
        }
        ans = solve(ans,k);
        for(int i = 0;i<n;i++){
            for(int j = 0;j<n;j++){
                printf("%d%c",ans.a[i][j]%10,j==n-1?'\n':' ');
            }
        }
        puts("");
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值