题目链接:uva 11149 - Power of Matrix
题目大意:给定一个矩阵,求∑ikAi
解题思路:因为k比较大,所以即使用快速幂的话复杂度还是有点高,利用矩阵倍增的方法∑ikAi=(1+Ak/2)∗∑ik/2Ai
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 50;
const int MOD = 10;
struct Mat {
int r, c, arr[maxn][maxn];
Mat () { memset(arr, 0, sizeof(arr)); }
Mat (int r = 0, int c = 0) { set(r, c); }
void set (int r, int c) {
this->r = r;
this->c = c;
memset(arr, 0, sizeof(arr));
}
Mat operator * (const Mat& u) {
Mat ret(r, u.c);
for (int k = 0; k < c; k++) {
for (int i = 0; i < r; i++)
for (int j = 0; j < u.c; j++)
ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]) % MOD;
}
return ret;
}
Mat operator + (const Mat& u) {
Mat ret(r, c);
for (int i = 0; i < r; i++)
for (int j = 0; j < c; j++)
ret.arr[i][j] = (arr[i][j] + u.arr[i][j]) % MOD;
return ret;
}
};
int N, K;
Mat pow_mat (Mat x, int n) {
Mat ret(N, N);
for (int i = 0; i < N; i++)
ret.arr[i][i] = 1;
while (n) {
if (n&1)
ret = ret * x;
x = x * x;
n >>= 1;
}
return ret;
}
Mat solve (Mat x, int n) {
if (n == 1)
return x;
Mat ret(N, N);
for (int i = 0; i < N; i++)
ret.arr[i][i] = 1;
if (n == 0)
return ret;
ret = (ret + pow_mat(x, n>>1)) * solve(x, n>>1);
if (n&1)
ret = ret + pow_mat(x, n);
return ret;
}
void put (Mat u) {
for (int i = 0; i < u.r; i++) {
printf("%d", u.arr[i][0]);
for (int j = 1; j < u.c; j++)
printf(" %d", u.arr[i][j]);
printf("\n");
}
}
int main () {
while (scanf("%d%d", &N, &K) == 2 && N) {
Mat ans(N, N);
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
scanf("%d", &ans.arr[i][j]);
ans.arr[i][j] %= MOD;
}
}
ans = solve(ans, K);
put(ans);
printf("\n");
}
return 0;
}