泛化误差E指示泛化性能
E = b^2 + v + n
偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力
方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响
噪声表达了当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度
本文探讨了泛化误差的概念,介绍了其三个组成部分:偏差、方差和噪声。偏差衡量了算法预测与真实结果之间的差距;方差反映了训练集变化对学习性能的影响;噪声则定义了学习算法能达到的期望泛化误差的最低界限。
泛化误差E指示泛化性能
E = b^2 + v + n
偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力
方差度量了同样大小的训练集的变动所导致的学习性能的变化,即刻画了数据扰动所造成的影响
噪声表达了当前任务上任何学习算法所能达到的期望泛化误差的下界,即刻画了学习问题本身的难度
2714
3486
6045

被折叠的 条评论
为什么被折叠?