一、需求:使用lucene框架实现搜索接口。
以下时本人记录的需要注意的地地方及代码链接。
1、注意:因为IndexWriter存在写锁,需要考虑并发的问题,提供一个lucene工具类,可以参考下:
https://blog.csdn.net/chao2263263364/article/details/48628145
2、索引的创建与维护:
2.1、由于创建索引是一个很耗时的过程,所以在项目启动时创建索引,索引如下:
2.2、在使用lucene的过程中,会经常对索引相关的数据进行增删改,但增加和修改数据时,会使lucene创建大量的索引文件,
如图:
当大量修改索引数据后,文件夹中的索引文件将达到可怕的数量。
当然,你可以使用indexWriter.deleteAll()方法删除之前的索引后,再将索引全部创建一次。但是,之前已经说过了,创建索引是一个非常耗时的,且修改一次数据创建一次索引,想想都蛋疼,所以不建议这么做。
在这里本人采用定时器去重新创建索引,例如一个星期执行一次等。
3、搜索:
3.1、 实时搜索:
https://blog.csdn.net/whuqin/article/details/42922813
IndexWriter writer = new IndexWriter(ramDir, writerConfig);
IndexReader reader = DirectoryReader.open(writer, true);
IndexSearcher searcher = new IndexSearcher(reader);
IndexReader newReader = DirectoryReader.openIfChanged((DirectoryReader) reader, writer, true);
if (reader != newReader) {
searcher = new IndexSearcher(newReader);
reader.close();
3.2、搜索实例:
https://www.cnblogs.com/liuxianan/p/lucene-hello-world.html
String[] fields = {"fileName", "content"}; // 要搜索的字段,一般搜索时都不会只搜索一个字段
// 字段之间的与或非关系,MUST表示and,MUST_NOT表示not,SHOULD表示or,有几个fields就必须有几个clauses
BooleanClause.Occur[] clauses = {BooleanClause.Occur.SHOULD, BooleanClause.Occur.SHOULD};
// MultiFieldQueryParser表示多个域解析, 同时可以解析含空格的字符串,如果我们搜索"上海 中国"
Query multiFieldQuery = MultiFieldQueryParser.parse(keyWord, fields, clauses, analyzer);
Query termQuery = new TermQuery(new Term("content", keyWord));// 词语搜索,完全匹配,搜索具体的域
Query wildqQuery = new WildcardQuery(new Term("content", keyWord));// 通配符查询
Query prefixQuery = new PrefixQuery(new Term("content", keyWord));// 字段前缀搜索
Query fuzzyQuery = new FuzzyQuery(new Term("content", keyWord));// 相似度查询,模糊查询比如OpenOffica,OpenOffice
BooleanQuery.Builder queryBuilder = new BooleanQuery.Builder();
queryBuilder.add(multiFieldQuery, BooleanClause.Occur.SHOULD);
queryBuilder.add(termQuery, BooleanClause.Occur.SHOULD);
queryBuilder.add(wildqQuery, BooleanClause.Occur.SHOULD);
queryBuilder.add(prefixQuery, BooleanClause.Occur.SHOULD);
queryBuilder.add(fuzzyQuery, BooleanClause.Occur.SHOULD);
BooleanQuery query = queryBuilder.build(); // 这才是最终的query
TopDocs topDocs = indexSearcher.search(query, 100); // 搜索前100条结果
4、分页:
https://blog.csdn.net/hu948162999/article/details/41209699
private ScoreDoc getLastScoreDoc(IndexSearcher indexSearcher, Sort sort, Query query,
Integer pageSize, Integer pageNum) {
try {
//获取上一页的最后数量
int num = (pageNum - 1) * pageSize;
TopDocs tds = indexSearcher.search(query, num, sort);
return tds.scoreDocs[num - 1];
} catch (IOException e) {
logger.error(e.getMessage(), e);
}
return null;
}
ScoreDoc lastScoreDoc = getLastScoreDoc(indexSearcher, sort, query, pageSize,pageNum);
TopDocs docs = indexSearcher.searchAfter(lastScoreDoc, query, pageSize, sort);
5、排序:
首先,需要在创建索引时,建立排序字段,然后,在根据该字段new一个排序实例,如:
https://blog.csdn.net/u012965373/article/details/44852169
//构建索引信息时创建 字符串排序
Document doc = new Document();
doc.add(new SortedDocValuesField("name", new BytesRef(bean.getName())));
//数字排序
doc.add(new NumericDocValuesField("age", bean.getAge()));
//搜索时 true降序
SortField sortField = new SortField("name", SortField.Type.STRING, true);
//SortField ageField = new SortField("age", SortField.Type.INT, false);
Sort sort = new Sort(sortField);
TopDocs docs = indexSearcher.search(query, 100, sort);
6、分词器:
https://blog.csdn.net/flyingdog123/article/details/67637783
7、索引查看器luck7.4.0下载地址: