哈夫曼树概念(3.12)(3)

本文介绍了哈夫曼树的核心概念,包括路径和路径长度、结点权值与带权路径长度、以及WPL在优化二叉树中的作用。详细讲解了哈夫曼树的构造步骤,并通过实例演示如何将数列转化为赫夫曼树。
摘要由CSDN通过智能技术生成

在这里插入图片描述
哈夫曼树
哈夫曼树的几个重要概念
1)路径和路径长度:在一棵树中,从一个结点可以到达孩子结点或孙子结点之间的通路,叫做路径,通路中分支的数目成为路径的长度。若规定根结点的层数为1,则从根结点到第n层的路径长度为 n - 1。

2)结点的权及带权路径长度:若赋给树种结点一个含有某种意义的数值,则这个数值称为结点的权。结点的带权路径长度为:从根结点到该结点的路径长度与权的乘积。
在这里插入图片描述

3)树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length),权值越大的结点离根结点越近的二叉树才是最优二叉树。

4)WPL最小的就是哈夫曼树
在这里插入图片描述

哈夫曼树的构造
步骤:
1)从小到大排序,将每一个结点即数据看成是一个最小的二叉树;
2)取出权值最小的两个二叉树;
3)组成一个新的二叉树,该树的权值为取出的两个二叉树权值之和;
4)将新的二叉树的权值放入数组,然后重复 1 2 3 4。直到所有的数据都被处理

哈曼树创建思路图解
给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗赫夫曼树.

思路分析(示意图):
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(课上练习):

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值