哈夫曼树
哈夫曼树的几个重要概念
1)路径和路径长度:在一棵树中,从一个结点可以到达孩子结点或孙子结点之间的通路,叫做路径,通路中分支的数目成为路径的长度。若规定根结点的层数为1,则从根结点到第n层的路径长度为 n - 1。
2)结点的权及带权路径长度:若赋给树种结点一个含有某种意义的数值,则这个数值称为结点的权。结点的带权路径长度为:从根结点到该结点的路径长度与权的乘积。
3)树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length),权值越大的结点离根结点越近的二叉树才是最优二叉树。
4)WPL最小的就是哈夫曼树
哈夫曼树的构造
步骤:
1)从小到大排序,将每一个结点即数据看成是一个最小的二叉树;
2)取出权值最小的两个二叉树;
3)组成一个新的二叉树,该树的权值为取出的两个二叉树权值之和;
4)将新的二叉树的权值放入数组,然后重复 1 2 3 4。直到所有的数据都被处理
哈曼树创建思路图解
给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗赫夫曼树.
思路分析(示意图):
(课上练习):