并查集支持两种操作:合并和查询,基础的拓展操作为记录连通块中点的数量
模板题:连通块中点的数量(本题来自acwing算法基础课活动 - AcWing)
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;
输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为
C a b
,Q1 a b
或Q2 a
中的一种。
输出格式
对于每个询问指令
Q1 a b
,如果 a 和 b 在同一个连通块中,则输出Yes
,否则输出No
。对于每个询问指令
Q2 a
,输出一个整数表示点 a 所在连通块中点的数量每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
代码如下:
#include<iostream>
using namespace std;
const int N=100010;
int n,m;
int p[N],cnt[N];
int find(int x)//查询x的根节点:一直找父节点,直到父节点=本身
{
if(p[x]!=x)
p[x]=find(p[x]);
return p[x];
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
p[i]=i;
cnt[i]=1;//以 i 为根的集合初始时只有自身一个点
}
while(m--)
{
string op;
int a,b;
cin>>op;
if(op=="C")
{
cin>>a>>b;
a=find(a),b=find(b);
if(a!=b)
{
p[a]=b;//将 a 合并到 b 中
cnt[b]+=cnt[a];
}
}
else if(op=="Q1")
{
cin>>a>>b;
if(find(a)==find(b))
puts("Yes");
else puts("No");
}
else
{
cin>>a;
cout<<cnt[find(a)]<<endl;
}
}
}
维护到根节点的距离
有一个划分为 N 列的星际战场,各列依次编号为 1,2,…,N。
有 N 艘战舰,也依次编号为 1,2,…,N,其中第 i 号战舰处于第 i 列。
有 T 条指令,每条指令格式为以下两种之一:
M i j
,表示让第 i 号战舰所在列的全部战舰保持原有顺序,接在第 j 号战舰所在列的尾部。C i j
,表示询问第 i 号战舰与第 j 号战舰当前是否处于同一列中,如果在同一列中,它们之间间隔了多少艘战舰。
现在需要你编写一个程序,处理一系列的指令。
输入格式
第一行包含整数 T,表示共有 T 条指令。
接下来 T 行,每行一个指令,指令有两种形式:
M i j
或C i j
。其中 M 和 C 为大写字母表示指令类型,i 和 j 为整数,表示指令涉及的战舰编号。
输出格式
你的程序应当依次对输入的每一条指令进行分析和处理:
如果是
M i j
形式,则表示舰队排列发生了变化,你的程序要注意到这一点,但是不要输出任何信息;如果是
C i j
形式,你的程序要输出一行,仅包含一个整数,表示在同一列上,第 i 号战舰与第 j 号战舰之间布置的战舰数目,如果第 i 号战舰与第 j 号战舰当前不在同一列上,则输出 −1。
数据范围
N ≤ 30000,T ≤ 500000
输入样例:
4
M 2 3
C 1 2
M 2 4
C 4 2
输出样例:
-1
1
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=30010;
int m;
int p[N],siz[N],d[N];
int find(int x)
{
if(p[x]!=x)
{
int root=find(p[x]);
d[x]+=d[p[x]];
p[x]=root;
}
return p[x];
}
int main()
{
scanf("%d",&m);
for(int i=1;i<N;i++)
{
p[i]=i;
siz[i]=1;
}
while(m--)
{
char op[2];
int a,b;
scanf("%s%d%d",op,&a,&b);
if(op[0]=='M')
{
int pa=find(a),pb=find(b);
if(pa!=pb)
{d[pa]=siz[pb];
siz[pb]+=siz[pa];
p[pa]=pb;
}
}
else
{
int pa=find(a),pb=find(b);
if(pa!=pb)
puts("-1");
else
printf("%d\n",max(0,abs(d[a]-d[b])-1));
}
}
}
作者:小豆点心
链接:https://www.acwing.com/activity/content/code/content/3673748/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
因为发现自己没写这道题,就把y总的copy过来了
以一道题分别介绍带边权和拓展域问题
奇偶游戏
小 A 和小 B 在玩一个游戏。
首先,小 A 写了一个由 0 和 1 组成的序列 S,长度为 N。
然后,小 B 向小 A 提出了 M 个问题。
在每个问题中,小 B 指定两个数 l 和 r,小 A 回答 S[l∼r] 中有奇数个 1 还是偶数个 1。
机智的小 B 发现小 A 有可能在撒谎。
例如,小 A 曾经回答过 S[1∼3] 中有奇数个 1,S[4∼6] 中有偶数个 1,现在又回答 S[1∼6] 中有偶数个 1,显然这是自相矛盾的。
请你帮助小 B 检查这 M 个答案,并指出在至少多少个回答之后可以确定小 A 一定在撒谎。
即求出一个最小的 k,使得 01 序列 S 满足第 1∼k 个回答,但不满足第 1∼k+1 个回答。
输入格式
第一行包含一个整数 N,表示 01 序列长度。
第二行包含一个整数 M,表示问题数量。
接下来 M 行,每行包含一组问答:两个整数 l 和 r,以及回答 even
或 odd
,用以描述 S[l∼r] 中有偶数个 1 还是奇数个 1。
输出格式
输出一个整数 k,表示 01 序列满足第 1∼k 个回答,但不满足第 1∼k+1 个回答,如果 01 序列满足所有回答,则输出问题总数量。
数据范围
N ≤ 109,M ≤ 5000
输入样例:
10
5
1 2 even
3 4 odd
5 6 even
1 6 even
7 10 odd
输出样例:
3
首先题意转换:
1.带边权并查集
用 d[ x ] 表示 x 与 p[ x ]的关系:0表示同类,1表示不同类
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
const int N=20010;
int n,m;
int p[N],d[N];
unordered_map<int,int> S;
int get(int x)
{
if(S.count(x)==0)
S[x]=++n;
return S[x];
}
int find(int x)
{
if(p[x]!=x)
{
int root=find(p[x]);
d[x]+=d[p[x]];
p[x]=root;
}
return p[x];
}
int main()
{
cin>>n>>m;
n=0;
for(int i=1;i<N;i++)
p[i]=i;
int res=m;
for(int i=1;i<=m;i++)
{
int a,b;
string type;
cin>>a>>b>>type;
a=get(a-1),b=get(b);
int t=0;
if(type=="odd")
t=1;
int pa=find(a),pb=find(b);
if(pa==pb)
{
if(((d[a]+d[b])%2+2)%2!=t)
{
res=i-1;
break;
}
}
else
{
p[pa]=pb;
d[pa]=d[a]^d[b]^t;
}
}
cout<<res<<endl;
}
2.拓展域
本题是分为奇数域和偶数域
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
const int N=40010;
int n,m;
int p[N]/*,d[N]*/;
unordered_map<int,int> S;
int get(int x)
{
if(S.count(x)==0)
S[x]=++n;
return S[x];
}
int find(int x)
{
if(p[x]!=x)
{
/*int root=find(p[x]);
d[x]+=d[p[x]];
p[x]=root;*/
p[x]=find(p[x]);
}
return p[x];
}
int main()
{
cin>>n>>m;
n=0;
for(int i=1;i<N;i++)
p[i]=i;
int res=m;
for(int i=1;i<=m;i++)
{
int a,b;
string type;
cin>>a>>b>>type;
a=get(a-1),b=get(b);
/*int t=0;
if(type=="odd")
t=1;
int pa=find(a),pb=find(b);
if(pa==pb)
{
if(((d[a]+d[b])%2+2)%2!=t)
{
res=i-1;
break;
}
}
else
{
p[pa]=pb;
d[pa]=d[a]^d[b]^t;
}*/
if(type=="even")
{
if(find(a+Base)==find(b))
{
res=i-1;
break;
}
p[find(a)]=find(b);
p[find(a+Base)]=find(b+Base);
}
else
{
if(find(a)==find(b))
{
res=i-1;
break;
}
p[(find(a+Base)]=find(b);
p[find(a)]=find(b+Base);
}
}
cout<<res<<endl;
}