大语言模型 15 - Manus 超强智能体 开源版本 OpenManus 案例与原理深入解析

写在前面

Manus 是由中国初创公司 Monica.im 于 2025 年 3 月推出的全球首款通用型 AI 智能体(AI Agent),旨在实现“知行合一”,即不仅具备强大的语言理解和推理能力,还能自主执行复杂任务,直接交付完整成果。

什么是 Manus?

“Manus”一词源自拉丁语“Mens et Manus”,意为“心智与双手”,强调其不仅能思考,还能动手执行。与传统 AI 助手(如 ChatGPT)主要提供建议或回答问题不同,Manus 能够独立完成从任务规划到执行的全过程。例如,用户只需输入一句话,Manus 就能自动完成数据分析、代码编写、文档生成等任务,真正实现从想法到成果的闭环。

Manus AI

https://manus.im/

在这里插入图片描述
这里放几个用户的案例:
● https://manus.im/share/jr5CKBMJJZDxvU2S5VdZLw?replay=1
● https://manus.im/share/c3onakN6Iajcm1Vt1xAVG7?replay=1
● https://manus.im/share/xFgpHb15vKqfRPWIs3JJPJ?replay=1

应用场景

  • 数据分析与可视化:处理上传的数据,生成图表、趋势分析或仪表盘。
  • 市场调研:搜索网络信息,整合数据并输出结构化分析结果。
  • 旅行规划:根据用户偏好生成详细行程和旅行手册。
  • 代码编写与运行:生成代码并测试,提供可执行程序或脚本。
  • 文件操作与整理:解压文件、对比文档并生成比较表格。
  • 网页生成:根据需求设计并输出展示型网页。
  • 多任务并行处理:支持同时处理多个任务,提升工作效率。

案例测试

贪吃蛇

写的提示词如下:

用HTML+CSS+JS 实现一个经典的 贪吃蛇游戏

最终的任务计划总结:

The plan to develop a classic Snake game using HTML, CSS, and JavaScript has been successfully completed. All 10 steps of the plan have been accomplished, achieving a 100% completion rate. The project involved setting up the project structure and basic files, creating and styling the game canvas with HTML and CSS, and initializing game variables with JavaScript. The core functionalities implemented include the snake's movement logic, food generation, collision detection, and game-over conditions. Additionally, features for starting and restarting the game were added. The game underwent testing and debugging to ensure functionality, and the code was optimized with added comments for clarity. The project is now complete with no pending tasks.

实现效果如下:https://wzk.icu/manus/snake/index.html
在这里插入图片描述

PingPong

提示词是这样的:

用HTML+CSS+JS 实现一个经典的 PingPong 游戏

计划汇总:

The plan to develop a Classic PingPong Game using HTML, CSS, and JavaScript (ID: plan_1741672648) has been successfully completed. All 9 steps of the plan have been accomplished, resulting in a fully functional game. The project began with setting up the necessary project structure, followed by designing the game layout. The core game logic was implemented using JavaScript, including the mechanics for paddle and ball movement. Collision detection was added to ensure interactions between paddles and walls were accurately represented. A scoring system and game over conditions were established to enhance gameplay. The game underwent thorough testing to ensure functionality and any bugs were addressed. Performance and responsiveness were optimized to provide a smooth user experience. Finally, the game was deployed to a web server or platform, making it accessible for users to play. The project was completed efficiently with no steps left in progress or blocked.

实现结果如下:https://wzk.icu/manus/pingpong/index.html
在这里插入图片描述

TODO List

提示词如下:

用HTML+CSS+JS 实现一个经典的todolist 可以添加修改删除

计划汇总如下:

The plan to implement a TODO list using HTML, JavaScript, and CSS has been successfully completed. All nine steps outlined in the plan have been accomplished, achieving a 100% completion rate. The steps included setting up the basic HTML structure, styling the list with CSS, and implementing various JavaScript functionalities such as adding, deleting, editing, and clearing items. Additionally, the application was tested across different browsers to ensure compatibility, and the code was optimized for performance and readability. Finally, the TODO list application was deployed to a web server, marking the completion of the project. The plan was executed efficiently with no steps blocked or left in progress.

效果如下:https://wzk.icu/manus/todolist/index.html

在这里插入图片描述

原理分析

基本介绍

OpenManus 采用了一种 类似 Auto-GPT 的思考方式,即智能体不会直接输出答案,而是会:
● 分析任务需求
● 制定解决方案
● 分解任务并执行
● 检查结果并优化
● 返回最终答案

按照我之前的认知来看,是一种:ReACT 的模式。
除了 ReACT 以外,还有一个:CodeACT(Manus团队采访的时候说用的是 CodeACT):

  • https://github.com/xingyaoww/code-act

在这里插入图片描述

AutoGPT

● https://github.com/Significant-Gravitas/AutoGPT
● https://agpt.co/

(之前自动生成绘本的项目)在24年的时候,当时使用 AutoGPT做了一些实验,当时GPT-4还非常的昂贵,做了一个给定任务:写小红帽的故事,借助生图工具(DALLE),保持上下文统一风格,最终生成了一组故事。

在 LangChain 中有一个简单案例,可以轻松的实现 ReACT:

# 下面是提示词的模板,通过提示词来激发大模型的 ReACT 行为:
# Answer the following questions as best you can. You have access to the following tools:
#
# {tools}
#
# Use the following format:
#
# Question: the input question you must answer
# Thought: you should always think about what to do
# Action: the action to take, should be one of [{tool_names}]
# Action Input: the input to the action
# Observation: the result of the action
# ... (this Thought/Action/Action Input/Observation can repeat N times)
# Thought: I now know the final answer
# Final Answer: the final answer to the original input question
#
# Begin!
#
# Question: {input}
# Thought:{agent_scratchpad}

# Construct the ReAct agent
# tools = [搜索引擎、绘图、SQL 等等]
agent = create_react_agent(llm, tools, prompt)
# Create an agent executor by passing in the agent and tools
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

message = agent_executor.invoke({"input": "what is LangChain?"})
print(f"message1: {message}")

03-19
### IEEE 802.1Q VLAN Tagging Protocol Standard IEEE 802.1Q 是支持虚拟局域网(VLAN)的标准协议之一,通常被称为 Dot1q。该标准定义了一种用于以太网帧的 VLAN 标记系统以及交换机和桥接器处理这些标记帧的操作流程[^2]。 #### 协议结构概述 IEEE 802.1Q 的核心功能在于通过在以太网数据帧中插入特定字段来实现 VLAN 标签的功能。这种标签使得网络设备能够识别哪些流量属于哪个 VLAN,并据此执行转发决策。具体来说: - **Tag Header**: 在原始以太网帧头部增加了一个额外的 4 字节字段作为 VLAN 标签头。这四个字节包含了以下部分: - **Priority Code Point (PCP)**: 使用 3 比特表示优先级级别,范围从 0 到 7,主要用于 QoS 控制。 - **Canonical Format Indicator (CFI)**: 这是一个单比特位,在传统以太网环境中设置为零。 - **VLAN Identifier (VID)**: 使用 12 比特标识具体的 VLAN ID,理论上可以支持多达 4096 个不同的 VLAN(编号从 0 至 4095),其中某些特殊值保留给内部用途或管理目的。 #### 数据包处理机制 当一个带有 VLAN tag 的数据包进入支持 IEEE 802.1Q 的交换机时,它会依据此标签决定如何路由或者过滤该数据流。如果目标端口不属于同一 VLAN,则不会传输至其他无关联的物理接口上;反之亦然——只有相同 VLAN 成员之间才允许互相通信除非经过路由器跨网段访问[^1]。 此外,为了简化管理和配置过程并增强互操作性,还引入了一些辅助性的子协议和服务组件比如 GARP(通用属性注册协议)。GARP 可帮助分发有关 VLAN 成员资格的信息到各个连接节点以便动态调整其行为模式而无需频繁手动干预[^3]。 以下是创建带 VLAN TAG 的 Python 示例代码片段展示如何模拟构建这样的 Ethernet Frame: ```python from scapy.all import Ether, Dot1Q, IP, sendp def create_vlan_packet(src_mac="00:aa:bb:cc:dd:ee", dst_mac="ff:ff:ff:ff:ff:ff", vlan_id=100, src_ip="192.168.1.1", dst_ip="192.168.1.2"): ether = Ether(src=src_mac, dst=dst_mac) dot1q = Dot1Q(vlan=vlan_id) ip_layer = IP(src=src_ip, dst=dst_ip) packet = ether / dot1q / ip_layer return packet packet = create_vlan_packet() sendp(packet, iface="eth0") # Replace 'eth0' with your network interface name. ``` 上述脚本利用 Scapy 库生成包含指定源地址、目的地址及所属 VLAN 编号的数据报文并通过选定的网卡发送出去测试实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

武子康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值