题目
你现在手里有一份大小为 N x N 的『地图』(网格) grid,上面的每个『区域』(单元格)都用 0 和 1 标记好了。其中 0 代表海洋,1 代表陆地,你知道距离陆地区域最远的海洋区域是是哪一个吗?请返回该海洋区域到离它最近的陆地区域的距离。
我们这里说的距离是『曼哈顿距离』( Manhattan Distance):(x0, y0) 和 (x1, y1) 这两个区域之间的距离是 |x0 - x1| + |y0 - y1| 。
如果我们的地图上只有陆地或者海洋,请返回 -1。

题解分析
广度优先搜索
思想
在树结构中,BFS可以看作是层序遍历,首先遍历第一层,即举例为0的节点,第二层为距离为1的节点,以此类推,遍历距离为3,4,5,6…的节点,因此广度优先搜索适合解决寻找最短路径的题目,通过BFS先找的节点,一定是举例最短的节点,因此,广度优先搜索也适用于解决寻找最长路径的题目
方法
- 树的广度优先搜索
- 首先定义一个队列,将其root节点入队,root节点出队时,其孩子节点再入队,每一棵子树均采取这种方式,最后即可完成广度优先搜索
- 图的广度优先搜索
- 树的源点只有root一个,但是图往往有多个源点,并且树是有方向的,不会重复遍历,而无向图会产生重复遍历的情况,因此需要标记某一节点是否被遍历过,这样就可以保证某一节点不会重复入队。
- 回到题目
- 这道题就是一道典型的多源广度优先搜索,首先进行遍历,将所有的陆地都进行入队 ,然后将队列中的每一个陆地进行扩散,那么扩散到的最后的海洋区域就是离陆地最远的海洋区域。(示意图来自LeetCode甜姐)

- 这道题就是一道典型的多源广度优先搜索,首先进行遍历,将所有的陆地都进行入队 ,然后将队列中的每一个陆地进行扩散,那么扩散到的最后的海洋区域就是离陆地最远的海洋区域。(示意图来自LeetCode甜姐)
代码
class Solution {
public int maxDistance(int[][] grid) {
//遍历当前区域的上下左右四个区域,运用数组来完成
int[] dx = {0, 0, 1, -1};
int[] dy = {1, -1, 0, 0};
Queue<int[]> queue = new ArrayDeque<>();
int m = grid.length;
int n = grid[0].length;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 1) {
//入队所有的陆地
queue.offer(new int[]{i, j});
}
}
}
//false表示没有海
boolean hasOcean = false;
//记录当前海的位置
int[] point = null;
//如果队列为空,证明没有陆地或已搜索完毕
while (!queue.isEmpty()) {
point = queue.poll();
//记录当前区域位置
int x = point[0];
int y = point[1];
//上下左右进行扩散
for (int i = 0; i < 4; i++) {
int newX = x + dx[i];
int newY = y + dy[i];
//越界跳出, 不等于0表示已遍历过 不再遍历
if (newX < 0 || newX >= m || newY >= n || newY < 0 || grid[newX][newY] != 0) {
continue;
}
//使用原数组记录举例
grid[newX][newY] = grid[x][y] + 1;
hasOcean = true;
//将扩散到的区域入队
queue.offer(new int[]{newX, newY});
}
}
if (point == null || !hasOcean) {
return -1;
}
//由于原来陆地为1 因此距离需要减1
return grid[point[0]][point[1]] - 1;
}
}
2667

被折叠的 条评论
为什么被折叠?



