How Many Tables

Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers.

One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table.

For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least.
Input
The input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases.
Output
For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks.

Sample Input
2
5 3
1 2
2 3
4 5

5 1
2 5
Sample Output
2
4

这个题目是一个并查集问题(因为没有专门训练过所以我现在还不懂什么叫并查集)。

题目大致意思是,有n个客人,有m组两个客人之间的关系,代表两个客人之间相互认识,然后要给客人们安排桌子,客人们与其他人坐同一张桌子的条件是这张桌子上至少有一个人是他认识的,问你最少要安排多少张桌子。比如第一组样例,1和2认识,2又和3认识,那么1,2,3就可以坐同一张桌子,而4,5和1,2,3互相不认识,所以他们不能坐同一张桌子,而4,5相互认识,所以4和5可以坐同一张桌子,所以总共需要两张桌子。





所以我们不妨先给每个人安排一张桌子,桌子的标号就对应这个人的序号,然后再讨论有哪些桌子可以去掉。

若两个人认识,那么就可以让桌子减少一张,但是这个条件必须建立在这两个人原来不能坐同一张桌子的情况下,如果1认识2,同时2又认识3,这时候如果我告诉你1认识3,那么桌子数是不变的。

所以我们要判断的是两个人认识的情况下,他们本身是不是可以分为同一组,那么我们可以做一个类似链表的结构,如果1和2一组,那么让1指向2,如果2认识3,那么让2指向3,在这个情况下如果1又认识4,那么就找到1认识的最后一个人,并且让他认识4,也就是1->2->3->3,然后再让3->4.(这个可能是棵树吧。。不过渣渣没学过数据结构所以。。。用土鳖点的方法凑合吧)。但是如果是1认识3,那么1所在的组是1->2->3->3,而3所在的组是3->3,他们是同一组,所以就不用进行任何操作。

我们可以在每次链接两个人的时候减少一张桌子,也可以在所有的链接都完毕之后再数有多少个人坐的位置与他的标号相同(这就表示他从来没有与其他人链接过)


#include<stdio.h>
int main()
{
	int T,m,n,group[1005],i,a,b,table;
	//group[i]表示第i个人分到的小组
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		table=n;//假设每个人一张桌子 
		//刚开始时每个人都分一个小组
		for(i=1;i<=n;i++)
			group[i]=i;
		//如果两个人认识,那么前一个人的组合并为后一个组
		//设a<b<c,若a和b认识,b和c认识
		//那么就会group[a]=b,group[b]=c,group[c]=c
		//也即判断与正在考察的人同一个组的组号与这个人的编号相等为结束
		for(i=1;i<=m;i++)
		{
			scanf("%d%d",&a,&b);//如果a和b认识
			while(group[a]!=a) a=group[a];//找出a的最终组
			while(group[b]!=b) b=group[b];//找出b的最终组
			if(a!=b)
			{
				group[a]=group[b];
				//如果a,b不是同一个组,那么总的桌子数减一 
				table--;
			}
		}
		printf("%d\n",table);
	}
	return 0;
}



 
### IntelliJ IDEA 中通义 AI 功能介绍 IntelliJ IDEA 提供了一系列强大的工具来增强开发体验,其中包括与通义 AI 相关的功能。这些功能可以帮助开发者更高效地编写代并提高生产力。 #### 安装通义插件 为了使用通义的相关特性,在 IntelliJ IDEA 中需要先安装对应的插件: 1. 打开 **Settings/Preferences** 对话框 (Ctrl+Alt+S 或 Cmd+, on macOS)。 2. 导航到 `Plugins` 页面[^1]。 3. 在 Marketplace 中搜索 "通义" 并点击安装按钮。 4. 完成安装后重启 IDE 使更改生效。 #### 配置通义服务 成功安装插件之后,还需要配置通义的服务连接信息以便正常使用其提供的各项能力: - 进入设置中的 `Tools | Qwen Coding Assistant` 菜单项[^2]。 - 填写 API Key 和其他必要的认证参数。 - 测试连接以确认配置无误。 #### 使用通义辅助编程 一旦完成上述准备工作,就可以利用通义来进行智能编支持了。具体操作如下所示: ##### 自动补全代片段 当输入部分语句时,IDE 将自动提示可能的后续逻辑,并允许一键插入完整的实现方案[^3]。 ```java // 输入 while 循环条件前半部分... while (!list.isEmpty()) { // 激活建议列表选择合适的循环体内容 } ``` ##### 解释现有代含义 选中某段复杂的表达式或函数调用,右键菜单里会有选项可以请求通义解析这段代的作用以及优化意见。 ##### 生产测试案例 对于已有的业务逻辑模块,借助于通义能够快速生成单元测试框架及初始断言集,减少手动构建的成本。 ```python def test_addition(): result = add(2, 3) assert result == 5, f"Expected 5 but got {result}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值