1. For the first competition we are going to look at
https://www.kaggle.com/competitions/paddy-disease-classification
Problem Statement
Rice (Oryza sativa) is one of the staple foods worldwide. Paddy, the raw grain
before removal of husk, is cultivated in tropical climates, mainly in Asian countries.
iuww520iuww520iuww520iuww520iuww520iuww520iuww520iuww520
Paddy cultivation requires consistent supervision because several diseases and pests might affect the paddy crops, leading to up to 70% yield loss. Expert supervision is usually necessary to mitigate these diseases and prevent crop loss. With the limited availability of crop protection experts, manual disease diagnosis is tedious and expensive. Thus, it is increasingly important to automate the disease identification process by leveraging computer vision-based techniques that achieved promising results in various domains.
Objective
The main objective of this competition is to develop a machine or deep learningbased model to classify the given paddy leaf images accurately. We provide a training dataset of 10,407 (75%) labeled images across ten classes (nine disease categories and normal leaf). Moreover, we also provide additional metadata for each image, such as the paddy variety and age. Your task is to classify each paddy image in the given test dataset of 3,469 (25%) images into one of the nine disease categories or a normal leaf.
Hint:- look at Jeremy Howards solution here:
https://www.kaggle.com/code/jhoward/first-steps-road-to-the-top-part-1
and notebook 8 of course 22. Iterate to find the best solution.
(15 marks)
2. The quality of AI-generated images has rapidly increased, leading to concerns of authenticity and trustworthiness.
CIFAKE is a dataset that contains 60,000 synthetically generated images and 60,000 real images (collected from CIFAR-10). Can computer vision techniques be used to detect when an image is real or has been generated by AI?
Design a deep learning model to classify images into either fake or real. Evaluate the performance of your model and analyze the impact of varying hyperparameters and architecture choices on model accuracy and training time. This dataset was released in 2023, so we really don’t know how well we can perform on this task.
See if you can win Kaggle for UQ!