天大&矿大&西南交通 AEM:AI+高通量实验 6 小时破解万种组合高熵合金 HER 催化剂筛选难题

图片


导语

氢析出反应(HER)是水分解制氢技术的关键,其催化效率对氢能产业的发展至关重要。然而,传统贵金属催化剂因稀缺和成本高,限制了其大规模应用。高熵合金(HEA)催化剂凭借多元素协同效应,展现出高活性与稳定性,但面临着组合筛选的 “组合爆炸” 难题。如今,天津大学陈亚楠、西南交通大学李金阳、中国矿业大学黄鹏飞等联合团队在《Advanced Energy Materials》期刊上发表论文,提出融合大语言模型(LLM)与遗传算法(GA)的人工智能驱动框架,结合高温热冲击(HTS)技术,成功破解了这一难题,为高效 HEA 催化剂的设计与合成开辟了新路径。

研究亮点

                                                        • 创新筛选框架 :构建了基于 LLM 和 GA 的高效 HEA 催化剂筛选框架,将候选组合从 4395 万缩减至 126 种铂基 HEA,极大提高了筛选效率。

                                                        • 超快合成技术 :利用 HTS 技术,使加热速率达 2000K/s,实验周期从传统方法的万年量级压缩至 6 小时,实现了催化剂的快速合成与筛选。

                                                        • 卓越催化性能 :所得最优催化剂 IrCuNiPdPt/C 在 10 和 100mAcm⁻² 电流密度下过电位分别低至 25.5mV 和 119mV,较商用 Pt/C 提升 49% 和 18%,且具有 300 小时的优异稳定性。

                                                        • 深入结构表征 :通过多种表征手段,揭示了 HTS 技术制备的催化剂具有 5nm 均匀纳米颗粒、晶格畸变与电子结构优化等特点,阐明了其高性能的原因。

                                                        图文解析

                                                          • 高效催化剂筛选框架的构建 :本研究整合 LLM 与 GA,构建了高熵合金催化剂的高效筛选框架。传统暴力搜索法需从 90 种金属元素中筛选五元组合,候选池达 4395 万种,以每日 10 个样本的速率需耗时约 1.2 万年。而 LLM 从 14242 篇文献中筛选出 10 个高活性 HER 元素,结合铂基设计生成 126 种候选组合;GA 通过四轮迭代优化,仅需 24 个样本,结合 HTS 技术快速合成与筛选,整体筛选周期缩短至 6 小时,解决了 HEA 设计中的 “组合爆炸” 难题。

                                                            图片

                                                          • 文献驱动的元素筛选与模型优化 :基于 LLM 的文献分析框架包含文献筛选、知识库构建、模型微调与应用四个阶段。通过 Web of Science 数据库检索 7.9 万篇文献,经筛选获得 1225 篇 HEA 相关研究。统计发现非贵金属中 Fe、Co、Ni 出现频率最高,贵金属中 Pt 占比显著,从而选择 Pt 为基底构建候选库。通过 InternLM 2.5 模型与低秩自适应微调,模型可智能推荐 HER 活性元素及实验策略,实现从海量文献到实验设计的闭环优化。

                                                            图片

                                                          • 超快合成技术对材料结构的调控 :采用 HTS 技术在 300ms 内以 2000K/s 的升温速率实现前驱体快速合金化,并通过均匀冷却抑制颗粒粗化。透射电镜显示,HTS 合成的 PtNiIrPdCu/C 颗粒尺寸均一,约 5nm,元素分布高度均匀;而传统管式炉合成样品因奥斯特瓦尔德熟化导致严重团聚。XRD 图谱未检测到元素偏析相,表明超快动力学抑制了相分离,形成单一固溶体结构,为多元素协同效应奠定了基础,显著提升了催化活性。

                                                            图片

                                                          • 遗传算法引导的组分优化 :基于 GA 的迭代优化流程从 126 种候选组合中筛选出最优催化剂。初始六组随机组合的过电位分布广泛,热图分析进一步揭示元素组合对活性的显著影响。通过四轮迭代,保留高活性元素并替换低效组分,最终获得 IrCuNiPdPt/C 催化剂,其过电位较初始组合降低 80%。20 次独立优化试验验证了方法的鲁棒性,实验迭代次数减少 60%,且结果高度一致。

                                                            图片

                                                          • 催化剂结构 - 性能关联与机理分析 :XRD 与高分辨 TEM 显示,IrCuNiPdPt/C 的(111)晶面间距较纯 Pt 收缩 7.1%,归因于 Ir、Ni 等小原子半径元素引起的晶格压缩应变。几何相位分析证实颗粒内部存在非均匀应变,这种应变通过调整 Pt 的 d 带中心,削弱氢中间体吸附能,从而加速 Volmer 与 Heyrovsky 步骤。HAADF-STEM 与 EDS 图谱证明 Pt、Ir、Ni、Pd、Cu 元素均匀分布,ICP-MS 与 XPS 进一步验证了组分稳定性。此外,催化剂的双电层电容为商用 Pt/C 的 7.5 倍,300 小时稳定性测试中过电位衰减可忽略,证实材料在酸性环境中的耐久性。

                                                            图片

                                                          图片

                                                          总结展望

                                                          该研究通过 LLM 引导的知识挖掘与 GA 驱动的实验优化,构建了 “计算智能 - 自主实验” 闭环框架,解决了 HEA 催化剂设计的维度灾难问题。LLM 从海量文献中提炼关键元素,大幅缩小搜索空间;GA 迭代优化结合 HTS 高通量合成,将研发效率提升至传统方法的 40%。所得催化剂性能创纪录,验证了多元素协同效应与结构均一性的重要性。这一策略不仅为高效催化剂设计提供了新范式,更将材料发现周期从 “千年” 缩短至 “小时”,为可持续能源材料开发开辟了高效路径。未来,该框架可扩展至其他多组分功能材料体系,加速清洁能源技术转化。

                                                          深圳中科精研科技有限公司专注于超快高温焦耳热冲击技术与智能化实验室解决方案,其研发的超快高温焦耳加热装置等,与上述研究中的 HTS 技术理念相通,可为材料科研提供强有力的实验设备支持,助力更多科研创新与突破

                                                          欢迎关注我们的公众号或访问官方网站:

                                                          https://www.zhongkejingyan.com.cn/

                                                          评论
                                                          添加红包

                                                          请填写红包祝福语或标题

                                                          红包个数最小为10个

                                                          红包金额最低5元

                                                          当前余额3.43前往充值 >
                                                          需支付:10.00
                                                          成就一亿技术人!
                                                          领取后你会自动成为博主和红包主的粉丝 规则
                                                          hope_wisdom
                                                          发出的红包
                                                          实付
                                                          使用余额支付
                                                          点击重新获取
                                                          扫码支付
                                                          钱包余额 0

                                                          抵扣说明:

                                                          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                                          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                                          余额充值