windows 下导入 tensorflow models

tensorflow自1.0版本起,将models单独拿出来作为一个文件版块。所以在tensorflow的github库中会存在两个部分,tensorflow是我们常用的框架源码部分,models则是扩展模块部分。

为了使用models,我们也要下载,设置好环境变量等信息。否则就会出现使用语句
from deeplab_model import *
而报错
ModuleNotFoundError: No module named ‘deeplab_model’

tensorflow下载完models,不添加环境变量依旧不能执行。但网上给出的大多是linux的解决方法,比如向PYTHONPATH里面添加models路径等。windows通过系统设置—环境变量中修改、新建、添加PYTHONPATH路径等操作均不可行,对path操作也不奏效。

亲测有用的方法为,添加这几条语句,将models的路径带入即可

import sys
sys.path.append("D:\\models\\research\\")
sys.path.append("D:\\models\\research\\slim")
sys.path.append("D:\\deeplabv3_model")
"解析引用model"是一个比较常见的错误信息。这个错误通常出现在以下两种情况下: 1. 模型文件被正确加载:这种情况通常出现在你正在尝试加载一个不存在的文件或者文件路径不正确的情况下。在这种情况下,你需要确保模型文件存在,并且文件路径是正确的。 2. 模型名称被正确指定:这种情况通常出现在你正在尝试使用已经定义但加载的模型的情况下。在这种情况下,你需要确保你已经正确地定义了模型,并且在调用模型时指定了正确的名称。 下面是一个使用TensorFlow加载模型时出现“解析引用model”的示例代码: ```python import tensorflow as tf # 加载模型 model = tf.keras.models.load_model('path/to/model') # 对模型进行推理 output = model(input_data) ``` 在这个示例代码中,如果出现“解析引用model”的错误,可能是因为模型文件路径不正确,或者在加载模型时没有指定正确的模型名称。你需要检查模型文件路径是否正确,并且确保在加载模型时指定了正确的名称。例如: ```python import tensorflow as tf # 加载模型 model = tf.keras.models.load_model('path/to/model', compile=False, custom_objects={'model': model}) # 对模型进行推理 output = model(input_data) ``` 在这个示例代码中,我们使用了`custom_objects`参数指定了模型的名称,从而避免了“解析引用model”的错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值