2021-08-19

本文探讨了机器学习中误差的来源,包括偏差(Bias)和方差(Variance)。偏差大导致欠拟合,可通过增加特征或复杂模型解决;方差大导致过拟合,可通过增大数据量或正则化缓解。使用交叉验证来调整模型,并介绍梯度下降法及其学习率调整,如Adagrad和Stochastic Gradient Descent。特征缩放确保输入特征对损失的贡献均衡,而梯度下降可能陷入局部最优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P5 误差

误差的来源

来源于两方面:Bias and Variance
在这里插入图片描述

Bias

  1. 它是 f* 与 f^ 之间的差距
  2. bias大 是 underfitting(训练的就不好)
  3. 针对欠拟合,增加输入特征 或 构建复杂模型结构

Variance

  1. 它是 f(model set) 之间的差距
  2. variance大 是 overfitting (训练的好,但在测试上表现的不好)
  3. 针对过拟合,要增加数据量 或 regularization正则化更加平滑
    在这里插入图片描述

以上两者要综合考虑,找到一个平衡点(bias 和 variance 都小),既不欠拟合也不过拟合。

How to do with error?

使用cross validation 交叉验证,training set 划分为training set 和 validation set。进一步地,使用n-fold cross validation 。
注:使用training set调整网络,而不是使用testing set 调整网络!

P6 梯度下降

是 获得最小 loss的过程中 更新参数 的方法

学习率

1.不能设置太大或者太小
在这里插入图片描述
2. 自动调整learning rate: Adagrad (参数不同,lr不同)【g是梯度,梯度越大,步伐越大】
在这里插入图片描述
3. Stochastic gradient descent
gd是看完所有exampel后,才更新一次参数;sgd是 每看到一次example,就更新一次参数。【θ是参数】
在这里插入图片描述

feature scaling

使得输入特征 x1,x2…xn对loss的影响 相对差不多。
在这里插入图片描述
那如何 进行feature scaling,也就是 标准化。
在这里插入图片描述

GD 的限制

会卡在 local minima,或者说微分值为0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值