numpy的学习-03

这篇博客详细介绍了numpy库中关于数组的各种操作,包括更改数组形状、转置、更改维度、组合、拆分和平铺。重点讲解了reshape、transpose、concatenate、split、repeat等函数的使用方法,帮助读者掌握numpy对多维数组的灵活处理。
摘要由CSDN通过智能技术生成

数组操作

更改数组的shape

  • np.ndarry.shape可返回数组的维度
  • 修改维度可通过为shape赋值
  • np.ndarray.flat将数组转换为一维的 迭代器(首地址/数组名),并且返回的是视图(共享空间)
  • np.ndarray.flatten([order=‘C/F/A/K’])将数组转换为一维数组,并且返回的是拷贝(copy);其中C表示按行平铺,F表示按列平铺,A表示按顺序平铺,K表示按元素在内存中出现的顺序平铺
  • np.ravel(arrayname[,order='C])将数组转换为一维数组,并且返回的是视图;C/F/A/K含义同上;当order='F’时,返回的是拷贝。
  • np.reshape(arrayname,newshape[,order=‘C’])表示在不更改数据的情况下改变数组的形状,且返回视图;其中参数newshape=[rows,-1]/[-1,cols]时,形状会根据已知的行数或列数确定,参数newshape=-1时,表示数组降至一维。

例:一维数组变二维数组

x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape)  # (8,)  获取维度
x.shape = [2, 4]  #修改维度
print(x)
# [[1 2 9 4]
#  [5 6 7 8]]

例:二维数组平铺化

import numpy as np

x = np.array([[11, 12, 13, 14, 15],
              [16, 17, 18, 19, 20],
              [21
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值