- 博客(5)
- 收藏
- 关注
原创 vivado HLS学习
高层次综合HLS(High Level Synthesis)是一种从更高抽象层次描述生产电路的技术,这项技术的出现使得电路设计不用再局限于使用硬件思维的电路设计语言,可以通过一定的编码方式使用C/C++进行电路设计,并使用相应的优化方法将电路资源最大化利用。HLS有三个关键的子流程,分别是行为描述,行为综合,分析与优化。
2023-02-28 11:49:11 1495
原创 SlowFast学习
尽管图像分类的准确率已经很高,视频分类工作的准确度也仍达不到近似于人类的理解层次,因此不能用传统的卷积分类方法来对视频进行分类,于是Facebook的AI研究团队提出了一种新方法来SlowFast分析视频片段里的内容。该方法受启发于人类视网膜神经元的工作机制,使用了一个快通道来分析视频中人类的动作,还有一个慢通道来识别视频中人物活动的背景。
2022-12-01 19:02:37 694
原创 循环神经网络的学习理解
自然语言处理是研究人与计算机使用自然语言沟通的有效方法,需要用到神经网络进行学习,于是开发出了循环神经网络一系列的神经网络算法。循环神经网络是一类具有记忆能力的神经网络,在循环神经网络中,神经元不但可以接受上一层神经元的信息,也可以接受自身的信息,形成具有环路的网络结构。循环神经网络对于每一个时刻的输入结合模型的状态都会给出一个输出,可以看作是同一个神经网络被无限复制得到的结果。
2022-11-07 19:51:36 741
原创 卷积神经网络的学习理解
一般的前馈神经网络权重参数矩阵过大,过拟合风险很高,并且在做图像处理时需要将图像展开为向量,这会丢失一些空间信息,于是在此基础上开发出卷积神经网络作为优化。卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,与普通前馈神经网络不一样的是,卷积神经网络的输入层为图像数据(32x32x3矩阵)而不是将图像数据展开为向量计算,隐含层不再仅仅是神经层简单的线性非线性变换的组合,而是替换成了卷积,池化,全连接多种组合形成的结构。
2022-11-07 19:36:20 238 1
原创 前馈神经网络的学习理解
前馈神经网络中,把每个神经元按接收信息的先后分为不同的组,每一组可以看做是一个神经层。每一层中的神经元接收前一层神经元的输出,并输出到下一层神经元。整个网络中的信息是朝着一个方向传播的,没有反馈的信息传播,可以用一个有向无环图来表示。前馈神经网络可以视为通过一系列的映射函数将样本X映射得到理想函数(分类器)Y的一种神经网络函数Y可以看作是一个通过简单非线性函数的多次复合得到的函数,如该图表示的映射关系为x→f1→f2→f3→f,深度为3。映射网络如图前馈神经网络的训练过程为优化权重系数w。
2022-11-07 19:28:55 586 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人