数据结构入门2-2(线性表)

目录

注:

线性表的应用

线性表的合并

例子:求一般集合的并集问题

有序表的合并

例子:求解有序集合的并集问题

案例分析和实现

例1:一元多项式的计算

例2:稀疏多项式的运算

总结


 

注:

        本笔记参考:《数据结构(C语言版)(第2版)》


线性表的应用

线性表的合并

例子:求一般集合的并集问题

        已知有两个集合A和B,现要求一个新的集合 A = AUB。例如:

【通过代码进行描述】

对于其中用到的函数,可以参考笔记2-1

void MergeList (List &LA, List LB)
{//将所有在线性表LB中但不在LA中的数据元素插入到LA中
    m = ListLength(LA);
    n = ListLength(LB);                //求线性表的长度
    for (i = 1; i <=n; i++)
    {
        GetElem(LB, i, e);            //取LB中第i个元素,并将其赋给e
        if (!LocateElem(LA, e))       //判断LA中是否存在元素,其的值等于e
            ListInsert(LA, ++m, e);   //将e插在LA的最后
    }
}

        线性表LA和LB分别代表集合A和B。

        现在我们通过扩大表LA,以此接收来自LB的在LA中不存在的数据元素。方法就是提取LB中的每个数据元素,依值在LA中进行查访,若在LA中不存在该数据元素,就进行插入操作。

【算法分析】

        上述算法的时间复杂度取决于抽象数据类型List定义中基本操作的执行时间,假设LA和LB的表长分别为m和n,循环执行n次,则:

        当采用顺序存储结构时

        在循环的过程中,GetElem函数ListInsert函数的执行时间与表长无关,LocateElem函数的执行时间和LA的表长有关(和m成正比),因此,该算法的时间复杂度为 O(m*n)

        当采用链式存储结构时

        GetElem函数的执行时间与LB的表长有关(和n成正比),LocateElem函数ListInsert函数的执行时间与LA的表长有关(和m成正比)。因此,当 m > n 时,该算法的时间复杂度也是 O(m*n)

有序表的合并

        有序表的定义:若线性表中的数据元素相互之间可以比较,并且数据元素在线性表中依值非递减或非递增有序排列,则称该线性表为有序表(Ordered List)。

        如果我们设有序表的长度是 n ,数组存在元素 nums[i] 则:

  • 非递减排列的定义:对于数组中所有的 i(0 <= i <= n-2),总满足 nums[i] <= nums[i+1]
  • 非递增排列的定义:对于数组中所有的 i(0 <= i <= n-2),总满足 nums[i] >= nums[i+1]

例子:求解有序集合的并集问题

1. 顺序有序表的合并

有序集合是指集合中的元素有序排列。

        现有有序非递减集合A和B,要求一个新的集合 C = AUB ,使集合C中的数据元素依旧非递减有序排列。例如:

【问题分析】

        因为此时LA和LB有序,所以可以不用从LB中依次取数据元素,到LA中进行查访。

        设指针pa和pb分别指向LA和LB中的某个元素,设pa当前所指的元素为a,pb当前所指的元素为b,则当前插入LC中的元素c为:

void MergeList_Sq(SqList LA, SqList LB, SqList &LC)
{//已知顺序有序表LA和LB的元素按值非递减排列
 //归并LA和LB得到新的顺序有序表LC,LC的元素也按值非递减数列
    LC.length = LA.length + LB.length;            //设置LC长度
    LC.elem = new ElemType[LC.length];            //为LC存储分配空间
    pc = LC.elem;                                 //指针pc指向新表的第一个元素
    pa = LA.elem;
    pb = LB.elem;                                 //指针pa和pb的初值分别指向两个表的第一个元素
    pa_last = LA.elem + LA.length - 1;
    pb_last = LB.elem + LB.length - 1;            //指针pa_last和pb_last分别指向两个表的最后一个元素
    while((pa <= pa_last) && (pb <= pb_last))     //LA和LB均为到达表尾
    {
        if(*pa <= *pb)
            *pc++ = *pa++;
        else
            *pc++ = *pb++;                        //取较小值填入LC的最后
    }
    while(pa <= pa_last)                          //LB已到达表尾,依次将LA的剩余元素插入LC的最后
        *pc++ = *pa++;
    while(pb <= pb_last)                          //类似于上一步
        *pc++ = *pb++;
}

【算法分析】

         由于LA和LB中的元素依值非递减,所以不需要再在LA中对LB中的元素进行全程搜索。如果LA和LB两个表长分别记为m和n,则算法最多执行的总次数为m+n,所以算法的时间复杂度为 O(m+n)

        此算法在归并时,需要开辟新的辅助空间,空间复杂度是 O(m+n) 。如果使用链表,就可以使空间复杂度达到最低。


2. 链式有序表的合并

        此时假设头指针为LA和LB的单链表分别为线性表LA和LB的存储结构,现在要归并LA和LB得到单链表LC。

void MergeList_L(LinkList &LA, LinkList &LB, LinkList &LC)
{//已知单链表LA和LB的元素按值非递减排列
 //归并所得单链表LC也按值非递减排列
    pc = LA->next;
    pb = LB->next;                    //pa和pb的初值分别指向两个表的第一个结点
    LC = LA;                          //用LA的头结点作为LC的头结点
    pc = LC;
    while(pa && pb)                   //LA和LB均为到达表尾
    {
        if(pa->data <= pb->data)      //取pa所指结点
            pc->ext = pa;
            pc = pa;
            pa = pa->next;
        else                          //取pb所指结点
        {
            pc->next = pb;
            pc = pb;
            pb = pb->next;
        }
    }
    pc->next = pa?pa:pb;              //将非空表的剩余段插入到pc所指结点之后
    delete LB;                        //释放LB的头结点
}

【算法分析】

        可以看出,该算法的时间复杂度和上一个算法相同,但是空间复杂度不同。由于在建立新表时,不需要新建结点空间,而只需要接触原本两个链表之间的关系,重新组合即可,所以空间复杂度是 O(1)

案例分析和实现

例1:一元多项式的计算

        一元多项式可以抽象成一个线性表。在计算机中,我们可以使用数组来表示一元多项式的线性表。

例如:

        将上述多项式P(x)通过数组表示:

指数(下标i)01234
系数p[i]105-432

例2:稀疏多项式的运算

        和一元多项式类似地,稀疏多项式也可以抽象成一个线性表。但和归并两个有序表不同的是,有序表在比较数据元素时只会出现两种情况(≤,>),而稀疏多项式在比较多项式指数时却需要考虑三种情况(=、<、>)。

        一般而言,链式存储结构的灵活性使它更适合表示一般的多项式,且合并过程的空间复杂度也只有O(1)。

        例如:存在两个链表分别表示多项式A(x)和B(x):

        在上图中,每个结点表示多项式中的一项。

        多项式相加的运算规则:

对于两个多项式中:

  • 所有指数相同的项:对应系数相加,若其和不为0,则插入到“和多项式”列表中;
  • 两个指数不同的项:将指数值较小的项插入到“和多项式”链表中。

        通过上述规则形成的链表无需生成结点,而是从两个多项式的链表中“摘取”结点。

【接下来对例子进行实现】

        用链表实现多项式,对应的数据结构定义为:

typedef struct PNode
{
	float coef;				//系数
	int expn;				//指数
	struct PNode* next;		//指针域
}PNode,*Polynomial;

1. 多项式的创建

        注:区别于一般链表的创建方式,多项式链表是一个有序表,每项的位置需要经过比较才能确认。

void GreatePolyn(Polynomial& P, int n)
{//输入n项的系数和指数,建立表示多项式的有序链表P
	P = new PNode;
	P->next = NULL;							//先建立一个只有头结点的空链表
	int i = 0;
	for (i = 1; i <= n; i++)				//依次输入n个非零项
	{
		Polynomial s = new PNode;			//生成新节点
		cin >> s->coef >> s->expn;
		Polynomial pre = P;
		Polynomial q = P->next;
		while (q && q->expn < s->expn)		//通过比较指数找到一个大于输入项指数的项*q
		{
			pre = q;
			q->next;
		}
		s->next = q;
		pre->next = s;						//将输入项s插入到q和其前驱结点pre之间
	}
}

【算法分析】

        创建一个项数为n的有序多项式链表,需要执行n次循环输入各项,而每次循环还需要比较前后输入项与各项的系数。最坏的情况下,第n次循环需要比较n次,此时时间复杂度就是 O(n²)


2. 多项式的相加

        通过上述算法创建两个多项式链表。假设头指针为Pa和Pb的单链表分别为 多项式A和B的存储结构 ,指针p1和p2分别指向 A和B中当前进行比较的某个节点 。

void AddPolyn(Polynomial& Pa, Polynomial& Pb)
{//多项式加法:Pa = Pa + Pb,利用两个多项式的结点构成“和多项式”
	Polynomial p1 = Pa->next;
	Polynomial p2 = Pb->next;					//p1和p2分别指向Pa和Pb的首元结点
	Polynomial p3 = Pa;							//p3指向“和多项式”的当前结点,初值为Pa
	while (p1 && p2)							//p1和p2均不为空
	{
		if (p1->expn = p2->expn)				//指数相等
		{
			float sum = p1->coef + p2->coef;
			if (sum)							//系数和不为0
			{
				p1->coef = sum;
				p3->next = p1;					//将修改后的Pa当前结点链在p3之后
				p3 = p1;						//p3指向p1
				p1 = p1->next;					//p1指向后一项
				Polynomial r = p2;
				p2 = p2->next;
				delete r;						//删除Pb当前结点,p2指向后一项
			}
			else                                //系数和为0
			{
				Polynomial r = p1;
				p1 = p1->next;
				delete r;						//删除Pa当前结点,p1指向后一项
				Polynomial r = p2;
				p2 = p2->next;
				delete r;						//删除Pb当前结点,p2指向后一项
			}
		}
		else if (p1->expn < p2->expn)			//Pa当前结点的指数值较小
		{
			p3->next = p1;
			p3 = p1;
			p1 = p1->next;
		}
		else									//Pb当前结点的指数值较小
		{
			p3->next = p2;
			p3 = p2;
			p2 = p2->next;
		}
		p3->next = p1 ? p1 : p2;				//插入非空多项式的剩余段
		delete Pb;								//释放Pb的头结点
	}
}

【算法分析】

        假设两个多项式的项数分别为m和n,则该算法的时间复杂度为 O(m+n) ,空间复杂度为 O(1)

        两个多项式的减法和乘法运算,都可以利用多项式加法的算法来实现。

  • 多项式的减法运算只需要对多项式的每项系数取反,然后调用加法函数进行计算即可;
  • 多项式的乘法运算可以分为一系列的加法运算,例如:

    其中,每一项都是一个一元多项式。

总结

顺序表链表
空间存储空间预先分配、会导致空间闲置或溢出现象。动态分配、不会出现存储空间闲置或溢出现象。
存储密度不用为表示结点间的逻辑关系而增加额外的存储开销,存储密度等于 1 。需要借助指针来体现元素间的逻辑关系,存储密度小于 1 。
时间存取元素随机存取、按位置访问元素的时间复杂度为 O(1)顺序存取、按位置访问元素时间复杂度为 O(n)
插入、删除平均移动约表中一般的元素,时间复杂度为 O(n)不需要移动元素,确定插入、删除位置后,时间复杂度为 O(1)
适应情况

① 表长度变化不大,且能事先确定变化的范围;

②很少进行插入或删除操作,经常按元素位置序号访问数据元素。

① 长度变化较大;

② 频繁进行插入或删除操作。

查找表头结点查找表尾结点查找结点*p的前驱结点
带头结点的单链表L

               L->next

        时间复杂度 O(1)

 从 L->next 依次向后遍历

        时间复杂度 O(n)

通过 p->next 无法找到其前驱
带头结点仅设头指针L的循环单链表

               L->next

        时间复杂度 O(1)

 从 L->next 依次向后遍历

        时间复杂度 O(n)

通过 p->next 可以找到其前驱

       时间复杂度 O(n)

带头结点仅设尾指针R的循环单链表

               R->next

        时间复杂度 O(1)

                  R

        时间复杂度 O(1)

通过 p->next 可以找到其前驱

       时间复杂度 O(n)

带头结点的双向循环链表L

               L->next

        时间复杂度 O(1)

             L->prior

        时间复杂度O(1)

               p->prior

        时间复杂度O(1)

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值