- 博客(8)
- 收藏
- 关注
原创 范数的概念
(1)向量范数如果定义一个向量为:a=[-5,6,8, -10]向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29;向量的2范数即:向量的每个元素的平方和再开平方根,上述a的2范数结果就是:15;向量的负无穷范数即:向量的所有元素的绝对值中最小的:上述向量a的负无穷范数结果就是:5;向量的正无穷范数即:向量的所有元素的绝对值中最大的:上述向量a的负无穷范数结果就是:10;(2)矩阵范数定义矩阵A = [ -1 2 -3; 4 -6 6]矩阵的1范数(
2021-07-24 17:37:06 2557
原创 西瓜书把书读薄之决策树
目录一、串联决策树(多个判定条件的分类问题)–> 如何判定(划分选择)二、决策树概念概念:属于分类问题(在用基尼指数的时候,也有回归树)。组成部分:一颗决策树一般包括一个根节点(样本全集)、若干个内部节点(测试属性)、若干个子节点(决策结果)。算法如下:返回的判定条件:当前节点包含的样本全部属性属于同一类别,无需划分。当前属性集为空,或是所有样本在所有属性上取值相同,无法划分。(把节点标记为叶节点,类别为样本中类别占比最大的)当前节点包含的样本集合为空,不能划分。三、划分选择
2021-05-06 16:11:10 230
原创 jieba切词的函数区别
jieba包分词函数#jieba.cat()函数#jieba.lcat()函数#jieba.posseg.cut()函数#jieba.posseg.lcut()函数
2021-03-12 16:26:56 1046
原创 数据处理之pandas 中unique()函数与nunique()函数区别
pandas 之unique()函数与nunique()函数区别.区别:(1)unique()是以 数组形式(numpy.ndarray)返回所选列的所有唯一值(特征的所有唯一值)(2)nunique() Return number of unique elements in the object.即返回的是唯一值的个数;等同于用法:len(ratings_df[‘title’].unique())...
2020-10-26 10:45:54 4242
原创 数据处理之数据去重
基本方法:Pandas中数据去重一般是用duplicated()和drop_duplicates()两个方法进行相结合函数介绍:duplicated 返回一个布尔向量,其长度为行数,表示行是否重复。drop_duplicates 删除重复的行。用法示例:movies_df.shape(45463, 2)movies_df.duplicated(['id', 'title']).sum() #返回重复项总数30movies_df.drop_duplicates(['id'], in
2020-10-26 10:44:57 1882
原创 数据处理之Pandas中数据类型转换
Pandas中进行数据类型转换有三种基本方法:使用astype()函数进行强制类型转换自定义函数进行数据类型转换使用Pandas提供的函数如to_numeric()、to_datetime()举例数据import numpy as npimport pandas as pd data = pd.read_csv('data.csv', encoding='gbk') #因为数据中含有中文数据data使用astype()函数进行强制类型转换data['客户编号'].astype(
2020-10-23 20:36:38 37607 1
原创 Dropout
Dropout原理解析##1.Dropout 原理理解在对于神经网络的每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如图1所示。##2.Dropout 的工作流程...
2020-06-09 16:49:17 424
原创 《机器学习实战之kNN海伦约会》
《机器学习实战之kNN海伦约会》问题阐述:TypeError: ufunc ‘multiply’ did not contain a loop with signature matching types dtype(’<U32’) dtype(’<U32’) dtype(’<U32’)网上找了很多资料,一直没有找到到底怎么回事。查看树上给的代码发现:因为类型原因在读取文件的...
2019-09-29 10:58:00 427 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人