Cow Acrobats Page48 贪心

Cow Acrobats Page48 贪心

  • 邻项交换的基础题,都快忘了,写篇博客加深一下印象

假设现在的排列顺序是1~n,且最大的risk出现在位置i
那么 M a x R i s k 1 = ∑ j = 1 i − 2 p [ j ] . w + p [ i − 1 ] . w − p [ i ] . s MaxRisk_1=\sum_{j=1}^{i-2}p[j].w+p[i-1].w-p[i].s MaxRisk1=j=1i2p[j].w+p[i1].wp[i].s
假设交换第i项和第i-1项, M a x R i s k MaxRisk MaxRisk变大,即变得“不优”
此时 M a x R i s k 2 = ∑ j = 1 i − 2 p [ j ] . w + p [ i ] . w − p [ i − 1 ] . s MaxRisk_2=\sum_{j=1}^{i-2}p[j].w+p[i].w-p[i-1].s MaxRisk2=j=1i2p[j].w+p[i].wp[i1].s

显然, M a x R i s k 1 ≤ M a x R i s k 2 MaxRisk_1\leq MaxRisk_2 MaxRisk1MaxRisk2
   ⟺    \iff p [ i − 1 ] . w − p [ i ] . s ≤ p [ i ] . w − p [ i − 1 ] . s p[i-1].w-p[i].s\leq p[i].w-p[i-1].s p[i1].wp[i].sp[i].wp[i1].s
   ⟺    \iff p [ i − 1 ] . w + p [ i − 1 ] . s ≤ p [ i ] . w + p [ i ] . s p[i-1].w+p[i-1].s\leq p[i].w+p[i].s p[i1].w+p[i1].sp[i].w+p[i].s
故得出结论,两者加和小的需要放在前面

代码:

const int maxn=2e6+7;
const int INF=0x3f3f3f3f;
const ll INFF=1e18;
struct node
{
    ll w,s;
}p[maxn];
int n;
ll sum=0,maxx=-INFF;
bool cmp(node a,node b){return a.w+a.s<b.w+b.s;}
int main()
{
    scanf("%d",&n);
    rep(i,1,n)scanf("%lld%lld",&p[i].w,&p[i].s);
    sort(p+1,p+1+n,cmp);
    rep(i,1,n)
    {
        maxx=max(maxx,sum-p[i].s);
        sum+=p[i].w;
    }
    WW(maxx);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值