素数与合数的定义,见 数论基础。
素数计数函数:小于或等于 的素数的个数,用 表示。随着 的增大,有这样的近似结果:。
素性测试
素性测试(Primality test)可以用于判定所给自然数是否为素数。
素性测试有两种:
- 确定性测试:绝对确定一个数是否为素数。常见例子包括试除法、Lucas–Lehmer 测试和椭圆曲线素性证明。
- 概率性测试:通常比确定性测试快很多,但有可能(尽管概率很小)错误地将 合数 识别为质数(尽管反之则不会)。因此,通过概率素性测试的数字被称为 可能素数,直到它们的素数可以被确定性地证明。而通过测试但实际上是合数的数字则被称为 伪素数。有许多特定类型的伪素数,最常见的是费马伪素数,它们是满足费马小定理的合数。概率性测试的常见例子包括 Miller–Rabin 测试。
试除法
暴力做法自然可以枚举从小到大的每个数看是否能整除。
参考实现
1 2 3 4 5 6 | |
这样做是十分稳妥了,但是真的有必要每个数都去判断吗?
很容易发现这样一个事实:如果 是 的约数,那么 也是 的约数。
这个结论告诉我们,对于每一对 ,只需要检验其中的一个就好了。为了方便起见,我们之考察每一对里面小的那个数。不难发现,所有这些较小数就是 这个区间里的数。
由于 肯定是约数,所以不检验它。
参考实现
1 2 3 4 5 6 | |
Fermat 素性测试
Fermat 素性检验 是最简单的概率性素性检验。
我们可以根据 费马小定理 得出一种检验素数的思路:
基本思想是不断地选取在 中的基 ,并检验是否每次都有 。
参考实现
1 2 3 4 5 6 7 8 9 10 | |
如果 但 不是素数,则 被称为以 为底的 伪素数。我们在实践中观察到,如果 ,那么 通常是素数。但这里也有个反例:如果 且 ,即使 是合数,有 。事实上, 是最小的伪素数基数。
很遗憾,费马小定理的逆定理并不成立,换言之,满足了 , 也不一定是素数。甚至有些合数 满足对任意满足 的整数 均有 ,这样的数称为 Carmichael 数。
Carmichael 函数
对正整数 ,定义 Carmichael 函数(卡迈克尔函数)为对任意满足 的整数 ,使
恒成立的最小正整数 .
即:
Carmichael 函数有如下性质:
-
(Carmichael 定理)对任意素数 和任意正整数 ,
证明进而有:
-
对任意正整数 ,有
-
对任意正整数 ,,有
-
-
令 的唯一分解式为 ,则
由 中国剩余定理 和 Carmichael 定理易证。
进而有:
- 对任意正整数 ,,有
Carmichael 数
对于合数 ,如果对于所有正整数 , 和 互素,都有同余式 成立,则合数 为 Carmichael 数(卡迈克尔数,OEIS:A002997)。
比如 就是一个 Carmichael 数,同时也是最小的 Carmichael 数。
我们可以用如下方法判断合数 是否为 Carmichael 数:
Korselt 判别法1
合数 是 Carmichael 数当且仅当 无平方因子且对 的任意质因子 均有 .
上述判别法可简化为:
Carmichael 数判别法
合数 是 Carmichael 数当且仅当 ,其中 为 Carmichael 函数。
Carmichael 数有如下性质:
- Carmichael 数无平方因子且至少有 个不同的质因子。
-
设 为小于 的 Carmichael 数个数,则:
注意
「若 为 Carmichael 数,则 也为 Carmichael 数」是错误的。
如 为 Carmichael 数,考虑 。
注意到 ,由 Korselt 判别法知,若 是 Carmichael 数,则 和 均为 的因子。
而 ,故 ,因此 不是 Carmichael 数。
Miller–Rabin 素性测试
Miller–Rabin 素性测试(Miller–Rabin primality test)是更好的素数判定方法。它是由 Miller 和 Rabin 二人根据 Fermat 素性测试优化得到的。和其它概率性素数测试一样,它也只能检测出伪素数。要确保是素数,需要用慢得多的确定性算法。然而,实际上没有已知的数字通过了 Miller–Rabin 测试等高级概率性测试但实际上却是合数,因此我们可以放心使用。
在不考虑乘法的复杂度时,对数 进行 轮测试的时间复杂度是 。Miller-Rabbin 素性测试常用于对高精度数进行测试,此时时间复杂度是 ,利用 FFT 等技术可以优化到
。
二次探测定理
如果 是奇素数,则 的解为 或者 。
要证明该定理,只需将上面的方程移项,再使用平方差公式,得到 ,即可得出上面的结论。
实现
根据 Carmichael 数的性质,可知其一定不是 。
不妨将费马小定理和二次探测定理结合起来使用:
将 中的指数 分解为 ,在每轮测试中对随机出来的 先求出 ,之后对这个值执行最多 次平方操作,若发现非平凡平方根时即可判断出其不是素数,否则再使用 Fermat 素性测试判断。
还有一些实现上的小细节:
- 对于一轮测试,如果某一时刻 ,则之后的平方操作全都会得到 ,则可以直接通过本轮测试。
- 如果找出了一个非平凡平方根 ,则之后的平方操作全都会得到 。可以选择直接返回
false
,也可以放到 次平方操作后再返回false
。
这样得到了较正确的 Miller Rabin:(来自 fjzzq2002)
参考实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | |
另外,假设 广义 Riemann 猜想(generalized Riemann hypothesis, GRH)成立,则对数 最多只需要测试 中的全部整数即可 确定 数 的素性,证明参见注释 7。
而在 OI 范围内,通常都是对 范围内的数进行素性检验。对于 范围内的数,选取 三个数作为基底进行 Miller–Rabin 素性检验就可以确定素性;对于 范围内的数,选取 七个数作为基底进行 Miller–Rabin 素性检验就可以确定素性。参见注释 8。
也可以选取 (即前 个素数)检验 范围内的素数。
注意如果要使用上面的数列中的数 作为基底判断 的素性:
- 所有的数都要取一遍,不能只选小于 的;
- 把 换成 ;
- 如果 或 ,则直接通过该轮测试。
反素数
顾名思义,素数就是因子只有两个的数,那么反素数,就是因子最多的数(并且因子个数相同的时候值最小),所以反素数是相对于一个集合来说的。
一种符合直觉的反素数定义是:在一个正整数集合中,因子最多并且值最小的数,就是反素数。
反素数
对于某个正整数 ,如果任何小于 的正数的约数个数都小于 的约数个数,则称为是 反素数(anti-prime, a.k.a., highly compositive numbers)。
注意
注意区分 emirp,它表示的是逐位反转后是不同素数的素数(如 149 和 941 均为 emirp,101 不是 emirp)。
过程
那么,如何来求解反素数呢?
首先,既然要求因子数,首先要做的就是素因子分解。把 分解成 的形式,其中 是素数, 为他的指数。这样的话总因子个数就是 。
但是显然质因子分解的复杂度是很高的,并且前一个数的结果不能被后面利用。所以要换个方法。
我们来观察一下反素数的特点。
-
反素数肯定是从 开始的连续素数的幂次形式的乘积。
-
数值小的素数的幂次大于等于数值大的素数,即 中,有 。
解释:
-
如果不是从 开始的连续素数,那么如果幂次不变,把素数变成数值更小的素数,那么此时因子个数不变,但是 的数值变小了。交换到从 开始的连续素数的时候 值最小。
-
如果数值小的素数的幂次小于数值大的素数的幂,那么如果把这两个素数交换位置(幂次不变),那么所得的 因子数量不变,但是 的值变小。
另外还有两个问题,
-
对于给定的 ,要枚举到哪一个素数呢?
最极端的情况大不了就是 ,所以只要连续素数连乘到刚好小于等于 就可以的呢。再大了,连全都一次幂,都用不了,当然就是用不到的啦!
-
我们要枚举到多少次幂呢?
我们考虑一个极端情况,当我们最小的素数的某个幂次已经比所给的 (的最大值)大的话,那么展开成其他的形式,最大幂次一定小于这个幂次。
unsigned long long
的最大值是 ,所以可以枚举到 。
细节有了,那么我们具体如何具体实现呢?
我们可以把当前走到每一个素数前面的时候列举成一棵树的根节点,然后一层层的去找。找到什么时候停止呢?
-
当前走到的数字已经大于我们想要的数字了;
-
当前枚举的因子已经用不到了;
-
当前因子大于我们想要的因子了;
-
当前因子正好是我们想要的因子(此时判断是否需要更新最小 )。
然后 dfs 里面不断一层一层枚举次数继续往下迭代可以。
例题
Codeforces 27E. A number with a given number of divisors
求具有给定除数个数的最小自然数。答案保证不超过 。
解题思路
参考代码
求不超过 的数中,除数最多的数。
解题思路
参考代码
参考资料与注释
- Rui-Juan Jing, Marc Moreno-Maza, Delaram Talaashrafi, "Complexity Estimates for Fourier-Motzkin Elimination", Journal of Functional Programming 16:2 (2006) pp 197-217.
- 数论部分第一节:素数与素性测试
- Miller-Rabin 与 Pollard-Rho 学习笔记 - Bill Yang's Blog
- Primality test - Wikipedia
- 桃子的算法笔记——反素数详解(acm/OI)
- The Rabin-Miller Primality Test
- Bach, Eric , "Explicit bounds for primality testing and related problems", Mathematics of Computation, 55:191 (1990) pp 355–380.
- Deterministic variant of the Miller-Rabin primality test
- Fermat pseudoprime - Wikipedia
- Carmichael number - Wikipedia
- Carmichael function - Wikipedia
- Carmichael Number -- from Wolfram MathWorld
- Carmichael's Lambda Function | Brilliant Math & Science Wiki
- Highly composite number - Wikipedia