模板:数学分析

本文详述了数学分析中的积分计算,包括增长趋势、积分表、积分求几何量如面积、体积、弧长等,并探讨了泰勒公式、级数部分和以及插值法等概念。
摘要由CSDN通过智能技术生成

数学分析

增长趋势

n → + ∞ , ∀ p , q > 0 , a > 1 , ( ln ⁡ n ) q ≪ n p ≪ a n ≪ n ! ≪ n n n\to+\infty,\forall p,q>0,a>1,{(\ln n)}^q\ll n^p\ll a^n\ll n!\ll n^n n+,p,q>0,a>1,(lnn)qnpann!nn

积分表

反读可得导数表,此处略。
∫ k   d x = k x + C \int k\,\mathrm{d}x=kx+C kdx=kx+C
∫ x a   d x = x a + 1 a + 1 + C \int x^a\,dx=\frac{x^{a+1}}{a+1}+C xadx=a+1xa+1+C
∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int\frac{1}{x}\,dx=\ln|x|+C x1dx=lnx+C
∫ e x   d x = e x + C \int e^x\,dx=e^x + C exdx=ex+C
∫ a x   d x = a x ln ⁡ a + C \int a^x\,dx=\frac{a^x}{\ln a}+C axdx=lnaax+C
∫ cos ⁡ x   d x = sin ⁡ x + C \int\cos x\,dx=\sin x+C cosxdx=sinx+C
∫ sin ⁡ x   d x = − cos ⁡ x + C \int\sin x\,dx=-\cos x+C sinxdx=cosx+C
∫ 1 c o s 2 x   d x = ∫ sec ⁡ 2 x   d x = tan ⁡ x + C \int\frac{1}{cos^2x}\,dx=\int\sec^2 x\,dx=\tan x+C cos2x1dx=sec2xdx=tanx+C
∫ 1 s i n 2 x   d x = ∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int\frac{1}{sin^2x}\,dx=\int\csc^2 x\,dx=-\cot x+C sin2x1dx=csc2xdx=cotx+C
∫ 1 1 − x 2   d x = arcsin ⁡ x + C = − arccos ⁡ x + C \int\frac{1}{\sqrt{1-x^2}}\,dx=\arcsin x+C=-\arccos x + C 1x2 1dx=arcsinx+C=arccosx+C
∫ 1 1 + x 2   d x = arctan ⁡ x + C = − a r c c o t   x + C \int\frac{1}{1+x^2}\,dx=\arctan x+C=-arccot\,x+C 1+x21dx=arctanx+C=arccotx+C
∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + C \int\sec x\tan x\,dx=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x   d x = − csc ⁡ x + C \int\csc x\cot x\,dx=-\csc x+C cscxcotxdx=cscx+C
∫ tan ⁡ x   d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int\tan x\,dx=-\ln|\cos x|+C tanxdx=lncosx+C
∫ cot ⁡ x   d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int\cot x\,dx=\ln|\sin x|+C cotxdx=lnsinx+C
∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int\sec x\,dx=\ln|\sec x+\tan x|+C secxdx=lnsecx+tanx+C
∫ csc ⁡ x   d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int\csc x\,dx=\ln|\csc x-\cot x|+C cscxdx=lncscxcotx+C
∫ s h   x   d x = c h   x + C \int sh\,x\,dx=ch\,x+C shxdx=chx+C
∫ c h   x   d x = s h   x + C \int ch\,x\,dx=sh\,x+C chxdx=shx+C
∫ 1 x 2 + a 2   d x = 1 a arctan ⁡ x a + C \int\frac{1}{x^2+a^2}\,dx=\frac{1}{a}\arctan\frac{x}{a}+C x2+a21dx=a1arctanax+C
∫ 1 x 2 − a 2   d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int\frac{1}{x^2-a^2}\,dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}| + C x2a21dx=2a1lnx+axa+C
∫ 1 a 2 − x 2   d x = arcsin ⁡ x a + C \int\frac{1}{\sqrt{a^2-x^2}}\,dx=\arcsin\frac{x}{a}+C a2x2 1dx=arcsinax+C
∫ 1 x 2 − a 2   d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int\frac{1}{\sqrt{x^2-a^2}}\,dx=\ln|x+\sqrt{x^2-a^2}|+C x2a2 1dx=lnx+x2a2 +C
∫ 1 x 2 + a 2   d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C \int\frac{1}{\sqrt{x^2+a^2}}\,dx=\ln|x+\sqrt{x^2+a^2}|+C x2+a2 1dx=lnx+x2+a2 +C

积分求几何量

面积

若简单闭曲线 { x = x ( t ) , y = y ( t ) , t ∈ [ α , β ] \begin{cases}x=x(t),\\y=y(t),\end{cases}t\in[\alpha,\beta] { x=x(t),y=y(t),t[α,β]端点处连续( x ( α ) = x ( β ) , y ( α ) = y ( β ) x(\alpha)=x(\beta),y(\alpha)=y(\beta) x(α)=x(β),y(α)=y(β))且其他地方不自交, x ( t ) , y ( t ) x(t),y(t) x(t),y(t)都逐段有连续微商,则此闭合曲线围起来的有界区域面积 S = − ∫ α β x ′ ( t ) y ( t )   d t = − ∫ α β y ( t )   d x ( t ) = − ∮ Γ y   d x = ∮ Γ x   d y S=-\int_\alpha^\beta x'(t)y(t)\,dt=-\int_\alpha^\beta y(t)\,dx(t)=-\oint_\Gamma y\,dx=\oint_\Gamma x\,dy S=αβx(t)y(t)dt=α

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值