数据分析题归纳
模型总结
先是模型建立,这一部分不写具体数据带入,只是列公式,第二部分模型求解,给出结果,包括图像,表格数据,最后公式,系数,然后对结果进行进一步解析即可。
1 数据预处理
1.1 数据丢失
可以使用的插值方式有拉格朗日插值法,牛顿插值法,平均值插值等,表述时,可以用前后图像加文字结合的形式呈现。
1.2 数据异常点
说明该段时间内出现异常大的数据点(毛刺点),经过插值平滑后,数据曲线接近正常,反之也可认为是错误的,直接删除,每次数据处理后,可以根据需要点出处理的数据条目。
拉格朗日插值法:
1.2.1 数据异常的依据
- 专家意见或者是资料查找常识判断等
- 箱线图进行分析
- 设置数据阈值,作为参考删除
2 数据降维
2.1 主成分分析_复杂型
模型建立
模型求解与分析
最后得出的降维数据,可以进行压缩可视化展示。
2.1 主成分分析_简单型
模型建立:
模型求解:
2.2 K-means聚类分析_复杂型
模型建立
模型求解
2.2 K-means聚类分析_简单型
模型建立:
模型求解:
3 数据拟合
常见的有神经网络拟合,拉格朗日拟合,多元线性回归拟合,多项式拟合等等
4 数据求解
5 图片统计
统计一下论文中出现图都是干啥的
- 数据处理时,前后对比图
- 复杂问题的解题流程图
- 在最后的对比实验中,用柱形图来表示模型的准确率或误差率
- 使用饼图对数据类别进行可视化展示
- 数据中出现经纬度,啥的数据,可以借助API接口,进行数据还原