【bzoj3110】[Zjoi2013]K大数查询

Description

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

Input

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

Output

输出每个询问的结果

Sample Input

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output

1
2
1
HINT

N,M<=50000,N,M<=50000a<=b<=N
1操作中abs(c)<=N

2操作中abs(c)<=Maxlongint

题解

树套树做法,第一位权值,第二位区间
对于区间[l,r],将权值在此之内的修改建立一棵普通线段树。这样对于一个询问,就可以类似二分答案,首先看权值在[1,mid]中有几个在询问的区间中,如果<排名,就往右,否则往左。
注意用永久化标记。否则会T。

代码

#include<cstdio>
#include<iostream>
#include<cstring>
#define ll long long
#define N 25000005
ll sum[N];
int lazy[N],ls[N],rs[N],root[500005];
int cnt,a,b,c,n,m;
using namespace std;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
inline void update(int p,int l,int r)
{
    sum[p]=sum[ls[p]]+sum[rs[p]]+lazy[p]*(r-l+1);
}
void change(int &p,int l,int r)
{
    if (!p) p=++cnt;
    if (l>=a&&r<=b){lazy[p]++;sum[p]+=r-l+1;return;}
    int mid=(l+r)>>1;
    if (a<=mid) change(ls[p],l,mid);
    if (b>mid) change(rs[p],mid+1,r);
    update(p,l,r);
}
void insert()
{
    int p=1,l=1,r=n*2+1;
    while (l!=r)
    {
        change(root[p],1,n);
        int mid=(l+r)>>1;
        if (c<=mid)r=mid,p=p*2;else l=mid+1,p=p*2+1;
    }
    change(root[p],1,n);
}
ll query(int p,int l,int r)
{
    if (!p) return 0;
    if (l>=a&&r<=b)return sum[p];
    int mid=(l+r)>>1;
    ll sum=0;
    if (a<=mid) sum+=query(ls[p],l,mid);
    if (b>mid) sum+=query(rs[p],mid+1,r);
    return sum+lazy[p]*(min(b,r)-max(l,a)+1);
}
ll solve()
{
    int p=1,l=1,r=n*2+1;
    while (l!=r)
    {
        int mid=(l+r)>>1;
        ll num=query(root[p*2],1,n);
        if (num>=c)p=p*2,r=mid;else p=p*2+1,l=mid+1,c-=num;
    }
    return n-l+1;
}
int main()
{
    n=read();m=read();
    while (m--)
    {
        int opt=read();
        a=read();b=read();c=read();
        if (opt==1)
        {
            c=n-c+1;
            insert();
        }
        else
        {
            printf("%lld\n",solve());
        }
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值