题目描述
罗老师准备了N杯果汁,编号0到N-1,每个杯子有C升容量。刚开始,每个杯子里倒了b[i]升果汁。罗老师会对这些果汁进行一些操作,选择两杯A和B,可以将A倒到B,直到A空了或B满了。
罗老师萌发一个想法,如果一个杯子里最终有x升果汁,那么得分p[x]分,于是罗老师随机为p[0]~p[C]设置了分数。现在问题是,罗老师通过上述操作,最大可以得到多少分?
输入
输入N C
输入N个整数,表示b[i],即每杯初始果汁
输入C+1个整数,表示p[x],即每个杯子中x升果汁得分多少
输出
输出最大得分
样例输入
2 10
5 8
0 0 0 0 0 0 0 0 0 0 10
样例输出
10
提示
【样例说明】
可以倒成一杯3,一杯10,3的得0分,10的得10分
其他样例
输入
2 10
5 8
0 0 0 0 0 10 10 10 10 10 10
输出
20
输入
4 10
4 5 3 7
14 76 12 35 6 94 26 3 93 90 420
输出
625
【数据规模和约定】
1<=N<=15
1<=C<=49
0<=b[i]<=C
0<=p[x]<=1,000,000
题解
我们发现,一杯满的果汁或空的果汁对于别的果汁是没有影响的,于是我们可以采用状压+记忆化搜索,对于一个集合N表示集合N的果汁能产生的最大分数,于是我们可以枚举,把集合分为两个,计算子集合的最大价值,从而得到最优解。
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
int dp[1<<16],b[20],p[55];
int n,c;
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
int dfs(int k)
{
if (dp[k]!=-1) return dp[k];
int cnt=0,sum=0;
int a[16];
for (int i=0;i<n;i++)
{
if (k&1<<i)
{
a[cnt]=i;
cnt++;
sum+=b[i];
}
}
dp[k]=(sum/c)*p[c];
if (sum%c==0) dp[k]+=(cnt-sum/c)*p[0];
else dp[k]+=p[sum%c]+(cnt-sum/c-1)*p[0];
int N=(1<<cnt)-1;
for (int i=(k-1)&k;i>0;i=(i-1)&k)
dp[k]=max(dp[k],dfs(i)+dfs(k^i));
return dp[k];
}
int main()
{
memset(dp,-1,sizeof(dp));
n=read();c=read();
for (int i=0;i<n;i++) b[i]=read();
for (int i=0;i<=c;i++) p[i]=read();
printf("%d",dfs((1<<n)-1));
}