Description
ftiasch 18岁生日的时候,lqp18_31给她看了一个神奇的序列 A1, A2, …, AN. 她被允许选择不超过 M 个连续的部分作为自己的生日礼物。
自然地,ftiasch想要知道选择元素之和的最大值。你能帮助她吗?
Input
第1行,两个整数 N (1 ≤ N ≤ 105) 和 M (0 ≤ M ≤ 105), 序列的长度和可以选择的部分。
第2行, N 个整数 A1, A2, …, AN (0 ≤ |Ai| ≤ 104), 序列。
Output
一个整数,最大的和。
Sample Input
5 2
2 -3 2 -1 2
Sample Output
5
题解
首先将符号相同的一段合并成一个值,为了处理方便一开始可以将序列中的0全部去掉
如 1 3 -1 -2 4 -1 变成 4 -3 4 -1
容易证明最后结果一定是取完整的一段
如果>0的段小于m那么就解决了
如果大于m
将这些段放入堆中按绝对值进行排序
获取堆中最小值将它和周围两段合并,这里要用到双向链表
因为如果这个值是正数,那么相当于不选它了
是负数的话相当于将它左右两段合并,这样都使得选取的段数-1
但是要考虑一个边界的问题
边上的负数不能取,因为就算取了它也不存在左右两段合并
而正数可以取,相当于不选它了
代码(略丑)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define ll long long
#define inf 10000005
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct cmp
{
bool operator()(pa a,pa b)
{
return abs(a.first)>abs(b.first);
}
};
priority_queue<pa,vector<pa>,cmp>q;
int n,m,tot,a[100005],sum,ans,nxt[100005],pre[100005];
bool mark[100005];
void del(int x)
{
mark[x]=1;
pre[nxt[x]]=pre[x];
nxt[pre[x]]=nxt[x];
}
int main()
{
n=read();m=read();tot=1;
for (int i=1;i<=n;i++)
{
int x=read();
if ((ll)a[tot]*x>=0)a[tot]+=x;
else a[++tot]=x;
}
n=tot;
for (int i=1;i<=n;i++) if (a[i]>0) sum++,ans+=a[i];
for (int i=1;i<=n;i++)
{
nxt[i]=i+1;
pre[i]=i-1;
q.push(make_pair(a[i],i));
}
while (sum>m)
{
sum--;
while (mark[q.top().second]) q.pop();
int x=q.top().second;q.pop();
if (pre[x]!=0&&nxt[x]!=n+1) ans-=abs(a[x]);
else if (a[x]>0) ans-=a[x];else{sum++;continue;}
a[x]=a[pre[x]]+a[nxt[x]]+a[x];
del(pre[x]);del(nxt[x]);
q.push(make_pair(a[x],x));
}
printf("%d",ans);
return 0;
}