LYK有一个长度为n的序列a。
他最近在研究平均数。
他甚至想知道所有区间的平均数,但是区间数目实在太多了。
为了方便起见,你只要告诉他所有区间(n*(n+1)/2个区间)中第k大的平均数就行了。
Input
第一行两个数n,k(1<=n<=100000,1<=k<=n*(n+1)/2)。
接下来一行n个数表示LYK的区间(1<=ai<=100000)。
Output
一行表示第k大的平均数,误差不超过1e-4就算正确。
Input示例
5 3
1 2 3 4 5
Output示例
4.000
题解
记前缀和sum[i]
我们二分答案ans
(sum[i]-sum[j])/(i-j)>=ans(i>j)
变形得sum[i]-ans*i>=sum[j]-ans*j
离散化+树状数组维护。
代码
#include<bits/stdc++.h>
#define mod 1000000007
#define inv 499122177
#define pa pair<int,int>
typedef __float128 F;
typedef long long ll;
const double eps=0.00001;
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
struct node{double d;int id;}A[100005];
int s[100005],a[100005],n,t[100005];
double sum[100005];
ll k;
bool cmp(node a,node b){return a.d<b.d;}
inline int lowbit(int x){return x&-x;}
inline int query(int x)
{
int ans=0;
for (;x;x-=lowbit(x)) ans+=t[x];
return ans;
}
inline void update(int x){for (;x<=n+1;x+=lowbit(x))t[x]++;}
bool check(double mid)
{
for (int i=0;i<=n;i++) A[i].d=sum[i]-mid*i,A[i].id=i,t[i+1]=0;
sort(A,A+n+1,cmp);
double pre=A[0].d,num=1;
for (int i=0;i<=n;i++)
{
if (A[i].d!=pre) num++;
s[A[i].id]=num;
}
ll ans=0;
for (int i=0;i<=n;i++)
{
ans+=query(s[i]);
update(s[i]);
}
return ans>=k;
}
int main()
{
n=read();scanf("%lld",&k);
for (int i=1;i<=n;i++){a[i]=read();sum[i]=sum[i-1]+a[i];}
double l=1.0,r=100000.0;
while (r-l>eps)
{
double mid=(l+r+eps)/2;
if (check(mid)) l=mid;else r=mid-eps;
}
printf("%.4lf",l);
return 0;
}