Description
有一个长度为n的字符串,每一位只会是p或j。你需要取出一个子串S(从左到右或从右到左一个一个取出),使得不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数。你需要最大化|S|。
Input
第一行一个数n,第二行一个长度n的字符串。
Output
S的最大长度。
Sample Input
6
jpjppj
Sample Output
4
HINT
【样例解释】
取pjpp这个串。
【数据范围】
n≤1000000
题解
p->1 j->-1
sum[]表示前缀和
一个区间[l,r]满足条件:任意k属于[l,r-1] sum[k]-sum[l-1]>=0 sum[r]-sum[l]>=0
变形sum[l-1]<=sum[k]<=sum[r]
记r[i]表示以i为左端点,只考虑从左往右取,最远能取到哪
l[i]表示以i为右端点,只考虑从右往左取,最远能取到哪
利用以上性质+单调栈求出l[i],r[i]
再树状数组求解即可
代码
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct node{int a,id;}r[1000005];
int n,ans,sum[1000005],q[1000005],p,t[1000005];
int l[1000005];
char s[1000005];
bool cmp(node a,node b){return a.a<b.a;}
int lowbit(int x){return x&-x;}
void update(int x,int y){for (;x<=n;x+=lowbit(x))t[x]=max(t[x],y);}
int query(int x)
{
int ans=0;
for (;x;x-=lowbit(x)) ans=max(ans,t[x]);
return ans;
}
int main()
{
n=read();scanf("%s",s+1);
for (int i=1;i<=n;i++)sum[i]=sum[i-1]+(s[i]=='p'?1:-1);
q[0]=n+1;
for (int i=n;i>=0;i--)
{
while (sum[i]<=sum[q[p]]&&p) p--;
r[i].a=q[p]-1;r[i].id=i;
q[++p]=i;
}
p=0;q[0]=0;
for (int i=n;i;i--) sum[i]=sum[i+1]+(s[i]=='p'?1:-1);
for (int i=1;i<=n+1;i++)
{
while (sum[i]<=sum[q[p]]&&p) p--;
l[i]=q[p]+1;
q[++p]=i;
}
sort(r,r+n+1,cmp);
p=0;
for (int i=0;i<n;i++)
{
while (p<=r[i].a&&p<=n)
{
if (l[p+1]<=p)update(l[p+1],p);
p++;
}
ans=max(ans,query(r[i].id+1)-r[i].id);
}
printf("%d",ans);
return 0;
}