【bzoj3712】[PA2014]Fiolki

Description

化学家吉丽想要配置一种神奇的药水来拯救世界。
吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号)。初始时,第i个瓶内装着g[i]克的第i种物质。吉丽需要执行一定的步骤来配置药水,第i个步骤是将第a[i]个瓶子内的所有液体倒入第b[i]个瓶子,此后第a[i]个瓶子不会再被用到。瓶子的容量可以视作是无限的。
吉丽知道某几对液体物质在一起时会发生反应产生沉淀,具体反应是1克c[i]物质和1克d[i]物质生成2克沉淀,一直进行直到某一反应物耗尽。生成的沉淀不会和任何物质反应。当有多于一对可以发生反应的物质在一起时,吉丽知道它们的反应顺序。每次倾倒完后,吉丽会等到反应结束后再执行下一步骤。
吉丽想知道配置过程中总共产生多少沉淀。

Input

第一行三个整数n,m,k(0<=m< n<=200000,0<=k<=500000),分别表示药瓶的个数(即物质的种数),操作步数,可以发生的反应数量。
第二行有n个整数g[1],g[2],…,g[n](1<=g[i]<=10^9),表示初始时每个瓶内物质的质量。
接下来m行,每行两个整数a[i],bi,表示第i个步骤。保证a[i]在以后的步骤中不再出现。
接下来k行,每行是一对可以发生反应的物质c[i],di,按照反应的优先顺序给出。同一个反应不会重复出现。

Output

Sample Input

3 2 1

2 3 4

1 2

3 2

2 3
Sample Output

6

题解
两个瓶子合并,就新建一个父亲节点,可以发现反应一定在两个点的lca上。
记录每种反应发生的深度与优先级,排序然后模拟反应过程。

代码

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll ans;
int cnt,tot,n,m,k;
int pos[400005],Head[400005],Next[800005],ret[800005];
int dep[400005],f[400005][19],g[200005];
struct node{int c,d,priority,deep;}r[500005];
bool cmp(node a,node b)
{
    if (a.deep!=b.deep) return a.deep>b.deep;
    return a.priority<b.priority;
}
void ins(int u,int v)
{
    ret[++cnt]=v;Next[cnt]=Head[u];Head[u]=cnt;
}
void dfs(int now)
{
    for (int i=Head[now];i;i=Next[i])
    {
        dep[ret[i]]=dep[now]+1;
        dfs(ret[i]);
    }
}
inline int lca(int a,int b)
{
    if (dep[a]<dep[b]) swap(a,b);
    for (int i=18;i>=0;i--)
        if (dep[f[a][i]]>=dep[b]) a=f[a][i];
    if (a==b) return a;
    for (int i=18;i>=0;i--)
        if (f[a][i]!=f[b][i])
        {
            a=f[a][i];b=f[b][i];
        }
    return f[a][0];
}
int main()
{
    n=read();m=read();k=read();
    for (int i=1;i<=n;i++) g[i]=read(),pos[i]=i;tot=n;
    for (int i=1;i<=m;i++)
    {
        int a=read(),b=read();tot++;
        f[pos[a]][0]=f[pos[b]][0]=tot;
        ins(tot,pos[a]);ins(tot,pos[b]);pos[b]=tot;
    }
    for (int j=1;j<=18;j++)
        for (int i=1;i<=tot;i++)
            f[i][j]=f[f[i][j-1]][j-1];
    for (int i=1;i<=tot;i++)
        if (!f[i][0]){dep[i]=1;dfs(i);}
    for (int i=1;i<=k;i++)
    {
        r[i].c=read();r[i].d=read();
        r[i].deep=dep[lca(r[i].c,r[i].d)];
        r[i].priority=i;
    }
    sort(r+1,r+k+1,cmp);
    for (int i=1;i<=k;i++)
    {
        if (!r[i].deep) continue;
        int mn=min(g[r[i].c],g[r[i].d]);
        g[r[i].c]-=mn;g[r[i].d]-=mn;
        ans+=mn*2;
    }
    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值