小学奥数内容板块全解析
一、计算问题
计算问题是数学的基础,在小学奥数中更是有着关键的地位。
- 四则运算
- 四则运算包括整数、小数、分数的加、减、乘、除运算。例如在计算小数乘法 2.5 × 3.6 2.5×3.6 2.5×3.6时,先按照整数乘法计算 25 × 36 = 900 25×36 = 900 25×36=900,然后看因数中一共有两位小数,就从积的右边起数出两位点上小数点,结果为 9.00 9.00 9.00。对于分数加法,如 2 5 + 3 7 \frac{2}{5}+\frac{3}{7} 52+73,需要先通分,找到5和7的最小公倍数35,将分数化为 14 35 + 15 35 = 29 35 \frac{14}{35}+\frac{15}{35}=\frac{29}{35} 3514+3515=3529。
- 简便运算
- 简便运算旨在利用运算定律简化计算过程,提高计算效率。像乘法分配律,计算 45 × 13 + 55 × 13 45×13 + 55×13 45×13+55×13时,可转化为 ( 45 + 55 ) × 13 = 1300 (45 + 55)×13 = 1300 (45+55)×13=1300。加法结合律在计算整数加法时也很常用,例如 23 + 56 + 77 = ( 23 + 77 ) + 56 = 156 23 + 56 + 77 = (23 + 77)+56 = 156 23+56+77=(23+77)+56=156。
二、数论问题
数论问题探究数字的性质和关系,培养学生的逻辑推理和抽象思维能力。
- 整除问题
- 判断一个数能否被另一个数整除是整除问题的核心。例如,要判断72能否被8整除,只需计算 72 ÷ 8 = 9 72÷8 = 9 72÷8=9,没有余数,所以72能被8整除。而判断91能否被3整除, 9 + 1 = 10 9 + 1 = 10 9+1=10,10不能被3整除,所以91不能被3整除。
- 质数与合数
- 质数是只有1和它本身两个因数的自然数,如11、13等。合数则除了1和它本身还有其他因数,像12( 12 = 1 × 12 = 2 × 6 = 3 × 4 12 = 1×12 = 2×6 = 3×4 12=1×12=2×6=3×4)。区分质数与合数有助于对数字进行分类和分析。
- 因数与倍数
- 在因数与倍数的关系中,若 a × b = c a×b=c a×b=c( a a a、 b b b、 c c c都是非0的自然数),那么 a a a和 b b b就是 c c c的因数, c c c就是 a a a和 b b b的倍数。例如,对于 15 ÷ 3 = 5 15÷3 = 5 15÷3=5,3和5是15的因数,15是3和5的倍数。
三、几何问题
几何问题让学生通过对图形的研究,培养空间想象力和几何思维。
- 平面几何
- 三角形:三角形的面积计算是重要知识点,公式为 S = 1 2 a h S=\frac{1}{2}ah S=21ah( a a a为底边长, h h h为这条底边对应的高)。比如一个三角形底为6厘米,高为4厘米,其面积为 1 2 × 6 × 4 = 12 \frac{1}{2}×6×4 = 12 21×6×4=12平方厘米。三角形按角可分为锐角三角形、直角三角形、钝角三角形;按边分有等边三角形、等腰三角形、不等边三角形。
- 四边形:长方形面积公式为 S = a b S = ab S=ab( a a a、 b b b分别为长和宽),如一个长为5米、宽为3米的长方形面积是 5 × 3 = 15 5×3 = 15 5×3=15平方米。正方形面积公式为 S = a 2 S=a² S=a2( a a a为边长),边长为4分米的正方形面积是 4 × 4 = 16 4×4 = 16 4×4=16平方分米。平行四边形面积公式为 S = a h S = ah S=ah( a a a为底边长, h h h为高),梯形面积公式为 S = ( a + b ) h 2 S=\frac{(a + b)h}{2} S=2(a+b)h( a a a、 b b b为上底和下底, h h h为高)。
- 立体几何
- 涉及长方体(体积 V = a b c V=abc V=abc, a a a、 b b b、 c c c分别为长、宽、高;表面积 S = 2 ( a b + b c + a c ) S = 2(ab + bc + ac) S=2(ab+bc+ac))、正方体(体积 V = a 3 V=a³ V=a3, a a a为边长;表面积 S = 6 a 2 S = 6a² S=6a2)、圆柱(体积 V = π r 2 h V=πr²h V=πr2h, r r r为底面半径, h h h为高;表面积 S = 2 π r 2 + 2 π r h S = 2πr² + 2πrh S=2πr2+2πrh)、圆锥(体积 V = 1 3 π r 2 h V=\frac{1}{3}πr²h V=31πr2h)等几何体的体积和表面积计算。例如,一个长方体长、宽、高分别为2厘米、3厘米、4厘米,体积是 2 × 3 × 4 = 24 2×3×4 = 24 2×3×4=24立方厘米,表面积是 2 × ( 2 × 3 + 3 × 4 + 2 × 4 ) = 52 2×(2×3 + 3×4 + 2×4)=52 2×(2×3+3×4+2×4)=52平方厘米。
四、应用题
应用题是将数学知识应用于实际生活场景,考验学生的问题解决能力。
- 行程问题
- 相遇问题:其基本公式是路程和=速度和×相遇时间。例如,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是3米/秒,乙的速度是2米/秒,经过8秒相遇,那么A、B两地的距离就是 ( 3 + 2 ) × 8 = 40 (3 + 2)×8 = 40 (3+2)×8=40米。
- 追及问题:路程差=速度差×追及时间。比如甲在乙前面15米,甲的速度是4米/秒,乙的速度是6米/秒,那么乙追上甲需要的时间是 15 ÷ ( 6 − 4 ) = 7.5 15÷(6 - 4)=7.5 15÷(6−4)=7.5秒。
- 工程问题
- 通常把工作总量看成单位“1”,工作效率×工作时间=工作总量。例如一项工程,甲单独做15天完成,乙单独做20天完成,两人合作需要的时间就是 1 ÷ ( 1 15 + 1 20 ) = 6 1÷(\frac{1}{15}+\frac{1}{20}) = 6 1÷(151+201)=6天。
- 浓度问题
- 浓度的计算公式为浓度=溶质质量÷溶液质量×100%。如把30克盐溶解在120克水中,盐水的浓度就是 30 ÷ ( 30 + 120 ) × 100 % = 20 % 30÷(30 + 120)×100\% = 20\% 30÷(30+120)×100%=20%。
五、组合问题
组合问题培养学生的排列组合思维和计数能力。
- 排列组合
- 排列是从给定个数的元素中取出指定个数的元素进行排序。例如从5个不同的字母A、B、C、D、E中取出3个字母进行排列,排列数为 A 5 3 = 5 ! ( 5 − 3 ) ! = 5 × 4 × 3 = 60 A_{5}^3=\frac{5!}{(5 - 3)!}=5×4×3 = 60 A53=(5−3)!5!=5×4×3=60种。组合是从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。从5个不同的字母中取出2个字母的组合数为 C 5 2 = 5 ! 2 ! ( 5 − 2 ) ! = 5 × 4 2 × 1 = 10 C_{5}^2=\frac{5!}{2!(5 - 2)!}=\frac{5×4}{2×1}=10 C52=2!(5−2)!5!=2×15×4=10种。
- 抽屉原理
- 例如,如果有5个苹果要放进3个抽屉里,那么必然有一个抽屉里至少有2个苹果。这体现了抽屉原理中元素分配的规律,帮助学生理解在不同情况下的数量分布情况。
六、计数问题
计数问题锻炼学生的有序思维和计算方法。
- 枚举法
- 例如,用1、2、3组成没有重复数字的三位数,有123、132、213、231、312、321这6种情况。通过一一列举,培养学生的全面思考能力和对数字组合的敏感度。
- 标数法
- 适用于求最短路线的问题。比如在一个4×4的方格图中,从左上角顶点到右下角顶点,规定只能向右或向下走,在每个交叉点标数,起点标1,然后每个点的标数等于它左边和上边的点的标数之和(如果没有左边或上边的点则标数为0),最后到达右下角顶点的标数就是最短路线的走法数量,为20种。
- 递推法
- 例如,有一数列1,1,2,3,5,8,13,…,从第三项起每一项都等于前两项之和,这就是斐波那契数列,其递推公式为 F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n)=F(n - 1)+F(n - 2) F(n)=F(n−1)+F(n−2)( n ≥ 3 n\geq3 n≥3)。通过递推法可以逐步计算出数列中的各项,培养学生的逻辑推理和归纳能力。
七、数列问题
数列问题引导学生探索数字的规律和序列关系。
- 等差数列
- 如数列4,7,10,13,…是一个等差数列,公差 d = 3 d = 3 d=3。它的通项公式是 a n = a 1 + ( n − 1 ) d a_{n}=a_{1}+(n - 1)d an=a1+(n−1)d,求第10项的值, a 10 = 4 + ( 10 − 1 ) × 3 = 31 a_{10}=4+(10 - 1)×3 = 31 a10=4+(10−1)×3=31。前 n n n项和公式是 S n = n ( a 1 + a n ) 2 S_{n}=\frac{n(a_{1}+a_{n})}{2} Sn=2n(a1+an),求前10项的和, S 10 = 10 × ( 4 + 31 ) 2 = 175 S_{10}=\frac{10×(4 + 31)}{2}=175 S10=210×(4+31)=175。
- 等比数列
- 例如数列2,4,8,16,…是一个等比数列,公比 q = 2 q = 2 q=2。它的通项公式是 a n = a 1 q n − 1 a_{n}=a_{1}q^{n - 1} an=a1qn−1,求第6项, a 6 = 2 × 2 6 − 1 = 64 a_{6}=2×2^{6 - 1}=64 a6=2×26−1=64。等比数列求和公式( q ≠ 1 q\neq1 q=1)是 S n = a 1 ( 1 − q n ) 1 − q S_{n}=\frac{a_{1}(1 - q^{n})}{1 - q} Sn=1−qa1(1−qn),求前5项的和, S 5 = 2 × ( 1 − 2 5 ) 1 − 2 = 62 S_{5}=\frac{2×(1 - 2^{5})}{1 - 2}=62 S5=1−22×(1−25)=62。
八、周期问题
周期问题帮助学生发现规律,培养周期性思维。
- 例如,有一串数字按照“2,5,8,11,2,5,8,11,…”的顺序排列,周期就是3。如果问第28个数字是什么, 28 ÷ 3 = 9 ⋯ ⋯ 1 28÷3 = 9\cdots\cdots1 28÷3=9⋯⋯1,余数为1,说明第28个数字是这个周期的第1个数字,即2。
- 在数学运算中也有周期现象,比如一个数除以某个数的余数呈现周期性。例如9除以4的余数, 9 ÷ 4 = 2 ⋯ ⋯ 1 9÷4 = 2\cdots\cdots1 9÷4=2⋯⋯1;10除以4的余数为2;11除以4的余数为3;12除以4的余数为0;13除以4的余数为1;14除以4的余数为2;15除以4的余数为3;16除以4的余数为0……这样余数以4为周期循环出现。
九、统筹规划问题
统筹规划问题培养学生的优化意识和资源合理分配能力。
- 时间统筹
- 例如,妈妈让小明做饭(需要30分钟)、洗菜(需要10分钟)、切菜(需要15分钟),怎样安排最节省时间?可以在做饭的同时洗菜和切菜,总共需要30分钟,因为做饭的30分钟里,洗菜和切菜可以同时进行,这样就合理利用了时间。
- 资源统筹
- 比如有不同载重量的车辆运输货物,要根据货物的重量和车辆的载重量合理安排车辆,使得运输成本最低或者运输效率最高。假设要运36吨货物,有载重量为6吨和载重量为8吨的两种车,若6吨车的运输费用每吨80元,8吨车的运输费用每吨100元。可以计算出6吨车每吨的运输成本为 80 ÷ 6 ≈ 13.33 80÷6\approx13.33 80÷6≈13.33元,8吨车每吨的运输成本为 100 ÷ 8 = 12.5 100÷8 = 12.5 100÷8=12.5元, 12.5 < 13.33 12.5\lt13.33 12.5<13.33,所以优先选择8吨车。 36 ÷ 8 = 4 36÷8 = 4 36÷8=4(辆) ⋯ ⋯ 4 \cdots\cdots4 ⋯⋯4(吨),此时用4辆8吨车,剩下4吨用1辆6吨车,这样运输成本最低,总费用为 4 × 100 + 80 = 480 4×100 + 80 = 480 4×100+80=480元。
十、智巧趣题
智巧趣题激发学生的创新思维和解决问题的灵活性。
- 例如,有一个池塘,池塘里有一片荷叶,荷叶每天面积会扩大一倍,经过30天荷叶长满了整个池塘,问荷叶长满池塘一半需要多少天?
- 解题思路:因为荷叶每天面积扩大一倍,从长满一半到长满整个池塘需要1天,那么长满池塘一半需要30 - 1 = 29天。
- 又如,有9个球,其中8个球质量相同,1个球质量较轻,用天平称至少称几次能找出较轻的那个球?
- 把9个球平均分成3组,每组3个。第一次,把其中两组放在天平两端,如果天平平衡,较轻的球在第三组;如果天平不平衡,较轻的球在天平较轻的一端那组。第二次,把有较轻球的那组分成三组,重复第一次的操作。第三次,就能找出较轻的那个球。所以至少称2次能找出较轻的球。
十一、图形规律问题
图形规律问题培养学生的观察能力和空间想象力。
- 例如,给出一组图形:第一个图形是一个边长为2厘米的等边三角形;第二个图形是在第一个三角形的每条边的中点向外各画一个边长为1厘米的等边三角形;第三个图形是在第二个图形的基础上,在新增加的小三角形的每条边的中点再向外各画一个边长为0.5厘米的更小等边三角形。按照这个规律,推测第4个图形的样子和周长。
- 第4个图形是在第三个图形的基础上,在新增加的小三角形的每条边的中点再向外各画一个边长为0.25厘米的等边三角形。
- 计算周长:第一个图形周长为 2 × 3 = 6 2×3 = 6 2×3=6厘米;第二个图形周长为 2 × 3 + 3 × 2 × 1 = 12 2×3 + 3×2×1 = 12 2×3+3×2×1=12厘米;第三个图形周长为 2 × 3 + 3 × 2 × 1 + 3 × 2 × 0.5 = 15 2×3 + 3×2×1 + 3×2×0.5 = 15 2×3+3×2×1+3×2×0.5=15厘米。可以发现规律,第 n n n个图形周长为 6 × ( 1 + 1 2 + 1 4 + ⋯ + 1 2 n − 1 ) 6×(1 +\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n - 1}}) 6×(1+21+41+⋯+2n−11)厘米,所以第4个图形周长为 6 × ( 1 + 1 2 + 1 4 + 1 8 ) = 6 × 1 − ( 1 2 ) 4 1 − 1 2 = 6 × 15 8 = 45 4 = 11.25 6×(1 +\frac{1}{2}+\frac{1}{4}+\frac{1}{8}) = 6×\frac{1 - (\frac{1}{2})^{4}}{1-\frac{1}{2}} = 6×\frac{15}{8}=\frac{45}{4} = 11.25 6×(1+21+41+81)=6×1−211−(21)4=6×815=445=11.25厘米。
十二、幻方问题
幻方问题考验学生的数字规律和布局能力。
- 用1 - 16这16个数字填入4×4的方阵中,使每行、每列和两条对角线上的数字之和都相等。
- 一种填法是:
- 1 15 14 4
- 12 6 7 9
- 8 10 11 5
- 13 3 2 16
- 先将1 - 16按顺序填入方阵,然后进行一定的变换和调整。例如,将对角线上的数字进行交换等操作,逐步满足幻方的要求。具体方法可以通过尝试和总结规律来掌握。
- 对于更高阶的幻方,如五阶幻方等,其构造方法更为复杂,但基本原理是相似的,都是要使每行、每列和对角线上的数字之和相等,需要学生更深入地探索数字之间的关系和规律。
十三、逻辑推理问题(非数论部分)
逻辑推理问题提升学生的逻辑思维和分析判断能力。
- 例如,甲、乙、丙、丁四人分别是医生、教师、律师、警察。已知甲和律师不同岁,律师比乙年龄小,丙比警察年龄大且丙不是律师,丁是医生的姐姐。要求判断甲、乙、丙、丁四人的职业。
- 解题思路:从“甲和律师不同岁”可知甲不是律师;从“律师比乙年龄小”可知乙不是律师;又因为“丙比警察年龄大且丙不是律师”,所以丙也不是律师,那么丁是律师。因为“丁是医生的姐姐”,所以丁不是医生,又因为丁是律师,所以医生不是甲、乙、丙,那么医生是乙。因为丙比警察年龄大,且乙是医生,丁是律师,所以丙不是警察,那么丙是教师,甲就是警察。
- 这类问题需要学生综合多个条件进行推理,通过排除法、假设法等方法逐步确定每个人的职业,培养学生的逻辑严谨性和思维敏捷性。
十四、数字谜问题
数字谜问题锻炼学生的数字运算和逻辑推理能力,充满了趣味性和挑战性。
- 例如在一个减法算式中,用字母代表数字,如下:
其中不同字母代表不同数字,且都在0到9之间,已知A = 5,C - F = 3,要确定其他字母所代表的数字。
- 解题思路:因为A = 5,那么G可能是4或者5(考虑退位情况)。假设G = 4,说明有退位,那么C比F大,且C - F = 3。假设F = 1,C = 4,此时B - E要考虑退位情况,假设B = 8,E = 3,那么H = 4(与C重复,不符合要求),所以这种假设不成立。再假设G = 5,即没有退位,那么C = F + 3,假设F = 2,C = 5(与A重复,不符合要求),假设F = 0,C = 3,然后B - E要等于H,假设B = 7,E = 4,那么H = 3,最后D可以是任意比5小的数字,假设D = 1。所以一种可能的组合是A = 5,B = 7,C = 3,D = 1,E = 4,F = 0,G = 5,H = 3,I = 0。
- 还有除法数字谜等类型。
十五、植树问题
植树问题不仅在数学中具有重要意义,还与实际生活中的场景紧密相关,培养学生的空间思维和数量关系理解能力。
- 在直线上植树,两端都种的情况。
- 例如,在一条长300米的公路一侧植树,每隔15米种一棵,一共要种多少棵树?
- 解题方法:根据公式棵数 = 间隔数 + 1,先求出间隔数为300÷15 = 20个,那么棵数就是20 + 1 = 21棵。可以这样理解,因为两端都种树,所以树的数量比间隔数多1,就像在一段线段上有20个间隔,那么点的数量(树的数量)就是21个。
- 两端都不种的情况。
- 比如在一条长240米的小路一侧植树,每隔8米种一棵,但两端都不种,一共要种多少棵树?
- 解题方法:根据公式棵数 = 间隔数 - 1,先求出间隔数为240÷8 = 30个,那么棵数就是30 - 1 = 29棵。这里两端不种树,所以树的数量比间隔数少1,类似于在一段线段上有30个间隔,去掉两端的点(不种树的位置),剩下的点的数量(树的数量)就是29个。
- 在封闭线路上植树,如在一个圆形公园周围植树。
- 例如,在一个周长为400米的圆形公园周围,每隔20米种一棵,一共要种多少棵树?
- 解题方法:在封闭线路上植树,棵数 = 间隔数,所以先求出间隔数为400÷20 = 20棵,即一共要种20棵树。这是因为在封闭线路上,没有两端的概念,树的数量和间隔数是一一对应的,就像在一个圆形上有20个等距离的点,那么就有20个间隔,也就种20棵树。
十六、牛吃草问题
牛吃草问题是一类经典的数学模型,培养学生对动态变化量的分析和解决能力。
- 基本牛吃草问题。
- 有一片草地,草每天匀速生长。假设这片草地可供18头牛吃20天,或可供24头牛吃15天,那么可供32头牛吃多少天?
- 解题思路:设每头牛每天吃草量为1份。先求草的生长速度,用两种不同牛的数量和吃草天数来计算,草的生长速度 =(18×20 - 24×15)÷(20 - 15) = 12份/天,即每天新长12份草。再求草地原有的草量,用18头牛吃20天的情况来计算,原有草量 = 18×20 - 12×20 = 120份。然后设32头牛可以吃x天,根据原有草量 + 生长的草量 = 牛吃的草量,可列方程120 + 12x = 32x,解得x = 6天,所以可供32头牛吃6天。
- 这里可以这样理解,18头牛20天吃的草量包括原有的草和20天新长的草,24头牛15天吃的草量包括原有的草和15天新长的草,通过两者的差值可以算出草每天的生长速度,进而求出原有的草量,然后再根据牛的数量和吃草天数的关系列出方程求解。
- 变形牛吃草问题。
- 例如,有一个水池,有进水管不断进水,同时有若干根出水管排水。已知进水管每分钟进水4立方米,若用6根出水管,30分钟可将水池排空;若用8根出水管,20分钟可将水池排空。问水池原有多少立方米水?
- 解题思路:把进水管进水看作草的生长,出水管排水看作牛吃草。设每根出水管每分钟排水1份。先求进水管的进水速度(相当于草的生长速度),(6×30 - 8×20)÷(30 - 20) = 2份/分钟,即进水管每分钟进水2立方米。再求水池原有水量,用6根出水管的情况来计算,原有水量 = 6×30 - 2×30 = 120立方米。
- 类似于基本牛吃草问题,6根出水管30分钟排的水量包括原有的水和30分钟进的水,8根出水管20分钟排的水量包括原有的水和20分钟进的水,通过两者的差值可以算出进水速度,进而求出原有的水量。
十七、盈亏问题
盈亏问题能够锻炼学生的逻辑思维和数量关系分析能力,在实际生活中也有一定的应用价值。
- 一盈一亏情况。
- 例如,学校给学生分铅笔,如果每人分3支,则多出18支;如果每人分5支,则少12支。问有多少学生?多少铅笔?
- 解题方法:根据公式(盈数 + 亏数)÷两次分配之差 = 份数(这里的份数就是学生人数),(18 + 12)÷(5 - 3) = 15个学生。铅笔数量可以用其中一种分配情况来计算,如按每人分3支的情况,铅笔数量 = 3×15 + 18 = 63支。
- 可以这样理解,第一次每人分3支多了18支,第二次每人分5支少了12支,那么两次分配的差值导致了盈亏情况的变化,通过这个差值和盈亏数可以求出学生人数,进而求出铅笔数量。
- 双盈情况。
- 比如,商店卖某种玩具,如果按每个15元卖,会盈利80元;如果按每个12元卖,会盈利40元。问这种玩具有多少个?进价是多少?
- 解题方法:根据公式(大盈数 - 小盈数)÷两次分配之差 = 份数(这里的份数就是玩具个数),(80 - 40)÷(15 - 12) = 13.33…(这里结果不是整数,说明题目数据可能有问题,假设数据无误,取整为13个)。进价可以用其中一种销售情况来计算,如按每个15元卖的情况,进价 = 15 - 80÷13≈15 - 6.15 = 8.85元。
- 双亏情况。
- 例如,有一批货物,如果用载重6吨的车运,会亏空5吨货物运不走;如果用载重5吨的车运,会亏空8吨货物运不走。问这批货物有多少吨?
- 解题方法:根据公式(大亏数 - 小亏数)÷两次分配之差 = 份数(这里的份数就是车的辆数),(8 - 5)÷(6 - 5) = 3辆。货物重量可以用其中一种运输情况来计算,如用载重6吨的车运的情况,货物重量 = 6×3 - 5 = 13吨。
十八、鸡兔同笼问题
鸡兔同笼问题是中国古代著名的数学趣题,具有多种解题方法,能够培养学生的逻辑推理和假设思维能力。
- 经典假设法。
- 例如,笼子里有鸡和兔共40只,脚有110只,问鸡兔各有多少只?
- 解题思路:假设全是鸡,那么脚的数量应该是40×2 = 80只,而实际有110只脚,多出来的脚是因为把兔当成鸡了,每把一只兔当成鸡就少算4 - 2 = 2只脚,所以兔的数量是(110 - 80)÷2 = 15只,鸡的数量是40 - 15 = 25只。
- 可以形象地理解为,先假设笼子里都是鸡,算出脚的数量,然后与实际脚的数量对比,差值是因为有兔被当成了鸡,通过每只兔和鸡脚数的差值来计算兔的数量,进而求出鸡的数量。
- 方程法。
- 设鸡有x只,兔有y只,则可列方程组
- {x + y = 40
- {2x + 4y = 110
- 解方程组:由第一个方程得x = 40 - y,将其代入第二个方程得2(40 - y) + 4y = 110,展开得80 - 2y + 4y = 110,移项得4y - 2y = 110 - 80,合并同类项得2y = 30,解得y = 15,将y = 15代入x = 40 - y得x = 25,所以鸡有25只,兔有15只。
- 方程法是通过设未知数,根据鸡兔的总数和脚的总数列出方程,然后求解未知数,这种方法更加直观和通用,适合解决更复杂的鸡兔同笼变形问题。
十九、钟表问题
钟表问题涉及到时间和角度的关系,培养学生的空间想象力和时间观念。
- 时针和分针的夹角问题。
- 例如,在6点整时,时针和分针的夹角是多少度?
- 解题思路:时针每小时走360÷12 = 30度,每分钟走30÷60 = 0.5度;分针每分钟走360÷60 = 6度。6点整时,时针走了6个小时,所以时针走了6×30 = 180度,分针在12点位置,所以时针和分针的夹角是180度。
- 可以这样理解,整个钟面是一个周角360度,被分成12个大格,每个大格的角度是360÷12 = 30度,时针每小时走一个大格,分针每小时走一圈,所以在不同时间点时针和分针的夹角可以通过它们的位置和运动速度来计算。
- 时针和分针重合问题。
- 例如,在几点几分时,时针和分针第一次重合?
- 解题思路:设经过x分钟时针和分针第一次重合。时针走了0.5x度,分针走了6x度,开始时(比如12点整时)时针和分针的夹角是0度,要重合则分针比时针多走一圈即360度,可列方程6x - 0.5x = 360,解得x = 720/11 ≈ 65.45分钟,即约在1点05分27秒时针和分针第一次重合。
- 因为时针和分针的运动速度不同,分针比时针快,所以分针会逐渐追上时针并重合,通过计算它们在相同时间内走过的角度差来确定重合的时间。
- 时针和分针成直角问题。
- 例如,在8点和9点之间,时针和分针何时成直角?
- 解题思路:时针每小时走30度,每分钟走0.5度;分针每分钟走6度。8点整时,时针走了8个小时,所以时针走了8×30 = 240度,分针在12点位置,此时时针和分针的夹角是240度。
- 情况一:时针在前,分针在后成直角。设经过x分钟,可列方程240 + 0.5x - 6x = 90,解得x = 300/11 ≈ 27.27分钟,即约在8点27分16秒时针和分针成直角。
- 情况二:分针在前,时针在后成直角。设经过y分钟,可列方程6y - 240 - 0.5y = 90,解得y = 600/11 ≈ 54.55分钟,即约在8点54分33秒时针和分针成直角。
- 在计算时针和分针成直角的时间时,需要考虑时针和分针的初始位置以及它们的运动速度,通过建立方程来求解不同情况下成直角的时间点。
二十、和差倍问题
- 和差问题
- 已知两数的和与差,求这两个数。例如,甲、乙两数的和是30,差是10,求甲、乙两数分别是多少。
- 解题思路:可以通过公式来求解。较大数 =(和 + 差)÷2,较小数 =(和 - 差)÷2。在这个例子中,甲 =(30 + 10)÷2 = 20,乙 =(30 - 10)÷2 = 10。
- 也可以通过画线段图来帮助理解。先画一条较长的线段表示较大数,再在其下方画一条较短的线段表示较小数,两条线段的长度差就是它们的差,而总长度就是它们的和。从图中可以更直观地看出如何计算较大数和较小数。
- 和倍问题
- 已知两数的和以及它们之间的倍数关系,求这两个数。例如,甲、乙两数的和是48,甲是乙的3倍,求甲、乙两数。
- 解题思路:设较小数乙为 x x x,那么甲就是 3 x 3x 3x。根据和的关系可列方程 x + 3 x = 48 x + 3x = 48 x+3x=48,解得 x = 12 x = 12 x=12,所以乙是12,甲是 3 × 12 = 36 3×12 = 36 3×12=36。
- 还可以通过份数的方法来思考。把乙看作1份,甲就是3份,那么它们的和一共是 1 + 3 = 4 1 + 3 = 4 1+3=4份,4份对应的和是48,所以1份就是 48 ÷ 4 = 12 48÷4 = 12 48÷4=12,即乙是12,甲是 12 × 3 = 36 12×3 = 36 12×3=36。
- 差倍问题
- 已知两数的差以及它们之间的倍数关系,求这两个数。例如,甲比乙多24,甲是乙的4倍,求甲、乙两数。
- 解题思路:设较小数乙为 x x x,则甲为 4 x 4x 4x。根据差的关系可列方程 4 x − x = 24 4x - x = 24 4x−x=24,解得 x = 8 x = 8 x=8,所以乙是8,甲是 4 × 8 = 32 4×8 = 32 4×8=32。
- 同样可以用线段图辅助理解。先画乙的线段,再画甲的线段,甲的线段长度是乙的4倍,它们的长度差是24。从图中可以看出, 24 24 24对应的是 4 − 1 = 3 4 - 1 = 3 4−1=3份,那么1份就是 24 ÷ 3 = 8 24÷3 = 8 24÷3=8,即乙是8,甲是 8 × 4 = 32 8×4 = 32 8×4=32。
二十一、年龄问题
- 特点
- 年龄问题的主要特点是年龄差始终不变。例如,小明今年10岁,他的爸爸今年35岁,那么无论过多少年,小明和他爸爸的年龄差始终是 35 − 10 = 25 35 - 10 = 25 35−10=25岁。
- 随着时间的推移,两人的年龄会同时增加或减少相同的数量。比如过了5年,小明长到 10 + 5 = 15 10 + 5 = 15 10+5=15岁,他爸爸也会增长5岁,变为 35 + 5 = 40 35 + 5 = 40 35+5=40岁。
- 解题方法
- 通常可以通过设未知数,利用年龄差不变的关系列方程求解。例如,今年小红的年龄是小丽的3倍,5年后小红的年龄比小丽大8岁,求小红和小丽今年各多少岁。
- 设小丽今年 x x x岁,则小红今年 3 x 3x 3x岁。5年后小丽是 ( x + 5 ) (x + 5) (x+5)岁,小红是 ( 3 x + 5 ) (3x + 5) (3x+5)岁,根据5年后年龄差为8岁,可列方程 ( 3 x + 5 ) − ( x + 5 ) = 8 (3x + 5)-(x + 5)=8 (3x+5)−(x+5)=8,解得 x = 4 x = 4 x=4,所以小丽今年4岁,小红今年 3 × 4 = 12 3×4 = 12 3×4=12岁。
- 也可以通过画线段图来分析。先画小丽年龄的线段,再根据倍数关系画小红年龄的线段,然后观察随着时间变化,线段长度的变化以及年龄差在图中的表现,从而找到解题思路。
二十二、平均数问题
- 基本概念
- 平均数是指在一组数据中所有数据之和再除以这组数据的个数。例如,有一组数据 2 2 2、 4 4 4、 6 6 6、 8 8 8、 10 10 10,它们的平均数为 ( 2 + 4 + 6 + 8 + 10 ) ÷ 5 = 6 (2 + 4 + 6 + 8 + 10)÷5 = 6 (2+4+6+8+10)÷5=6。
- 平均数可以反映一组数据的总体水平。在实际生活中,比如计算班级学生的平均成绩、平均身高等等,都用到平均数的概念。
- 加权平均数
- 当一组数据中不同的数据重要程度不同时,就需要计算加权平均数。例如,在一次考试中,语文、数学、英语的成绩分别为 80 80 80分、 90 90 90分、 75 75 75分,它们的权重分别为 3 3 3、 4 4 4、 3 3 3(权重可以理解为这门学科在总成绩中的占比)。
- 那么加权平均数为
(
80
×
3
+
90
×
4
+
75
×
3
)
÷
(
3
+
4
+
3
)
(80×3 + 90×4 + 75×3)÷(3 + 4 + 3)
(80×3+90×4+75×3)÷(3+4+3)
- 先计算分子: 80 × 3 = 240 80×3 = 240 80×3=240, 90 × 4 = 360 90×4 = 360 90×4=360, 75 × 3 = 225 75×3 = 225 75×3=225,相加得 240 + 360 + 225 = 825 240 + 360 + 225 = 825 240+360+225=825。
- 分母为 3 + 4 + 3 = 10 3 + 4 + 3 = 10 3+4+3=10。
- 所以加权平均数为 825 ÷ 10 = 82.5 825÷10 = 82.5 825÷10=82.5分。
- 平均数的应用
- 可以根据平均数来判断整体情况。比如一个班级的平均成绩较高,说明这个班级学生的总体学习水平较好。
- 也可以通过已知的平均数和部分数据来求其他数据。例如,已知5个同学的平均身高是 150 150 150厘米,其中4个同学的身高分别是 145 145 145厘米、 152 152 152厘米、 148 148 148厘米、 155 155 155厘米,求第5个同学的身高。
- 先求5个同学的身高总和为
150
×
5
=
750
150×5 = 750
150×5=750厘米,然后用总和减去已知4个同学的身高,即
750
−
(
145
+
152
+
148
+
155
)
750 - (145 + 152 + 148 + 155)
750−(145+152+148+155)
- 先计算括号内: 145 + 152 + 148 + 155 = 600 145 + 152 + 148 + 155 = 600 145+152+148+155=600厘米。
- 所以第5个同学的身高为 750 − 600 = 150 750 - 600 = 150 750−600=150厘米。
二十三、方阵问题
- 方阵的基本概念
- 方阵是指行数和列数相等的矩形阵列。例如,一个 5 × 5 5×5 5×5的方阵,就有5行5列。方阵有一些重要的特点,如方阵的最外层每边有 n n n个元素,那么最外层的元素总数为 4 n − 4 4n - 4 4n−4(因为四个角上的元素被重复计算了一次)。
- 方阵的总元素个数为 n × n n×n n×n( n n n为方阵的边长,也就是行数或列数)。
- 实心方阵
- 例如一个 6 × 6 6×6 6×6的实心方阵,求它的总人数。
- 根据总元素个数公式 n × n n×n n×n,这里 n = 6 n = 6 n=6,所以总人数为 6 × 6 = 36 6×6 = 36 6×6=36人。
- 若求最外层人数,根据 4 n − 4 4n - 4 4n−4,可得 4 × 6 − 4 = 20 4×6 - 4 = 20 4×6−4=20人。
- 空心方阵
- 比如一个外层每边有 8 8 8个元素的空心方阵,内层每边有 6 6 6个元素,求这个空心方阵的人数。
- 先求外层人数: 4 × 8 − 4 = 28 4×8 - 4 = 28 4×8−4=28人。
- 再求内层人数: 4 × 6 − 4 = 20 4×6 - 4 = 20 4×6−4=20人。
- 那么空心方阵的人数为外层人数减去内层人数,即 28 − 20 = 8 28 - 20 = 8 28−20=8人(这里是简单的两层空心方阵情况,对于多层空心方阵计算方法类似,依次计算相邻两层的人数差并相加)。
- 方阵的应用
- 在实际生活中,方阵问题可以应用于排队列阵、棋子摆放等场景。例如,在操场上学生进行方阵表演,就可以根据方阵的知识来安排人数和队形。在一些数学竞赛中,也会出现方阵问题来考查学生的空间思维和数学运算能力。
二十四、还原问题
- 基本概念
- 还原问题是指已知一个数经过一系列的运算后得到一个结果,要求原来的数是多少。例如,一个数加上 5 5 5,再乘以 3 3 3,结果是 36 36 36,求这个数。
- 解题方法
- 通常采用倒推法来解决还原问题。从最后的结果出发,逐步按照运算的逆过程进行计算。在上面的例子中,最后结果是 36 36 36,它是经过乘以 3 3 3得到的,那么在这之前的数就是 36 ÷ 3 = 12 36÷3 = 12 36÷3=12;而 12 12 12是一个数加上 5 5 5得到的,所以原来的数是 12 − 5 = 7 12 - 5 = 7 12−5=7。
- 也可以通过画流程图来帮助理解和计算。先画出最后的结果 36 36 36,然后从右往左,根据运算的逆过程依次画出每一步的计算,最后得到原来的数。
- 复杂还原问题
- 例如,有一个数,先除以 4 4 4,再减去 3 3 3,然后乘以 5 5 5,结果是 25 25 25,求这个数。
- 从结果 25 25 25开始倒推, 25 25 25是乘以 5 5 5得到的,那么之前的数是 25 ÷ 5 = 5 25÷5 = 5 25÷5=5; 5 5 5是减去 3 3 3得到的,所以再之前的数是 5 + 3 = 8 5 + 3 = 8 5+3=8; 8 8 8是除以 4 4 4得到的,那么原来的数是 8 × 4 = 32 8×4 = 32 8×4=32。
- 对于这类复杂的还原问题,需要仔细分析每一步的运算逆过程,按照顺序逐步计算,确保每一步的计算准确无误,从而得出正确的结果。
二十五、容斥原理
- 两集合容斥原理
- 例如,一个班级有 30 30 30名学生,其中喜欢数学的有 20 20 20人,喜欢语文的有 15 15 15人,既喜欢数学又喜欢语文的有 8 8 8人。求喜欢数学或语文的学生有多少人。
- 根据容斥原理公式: A ∪ B = A + B − A ∩ B A\cup B = A + B - A\cap B A∪B=A+B−A∩B(其中 A A A表示喜欢数学的人数, B B B表示喜欢语文的人数, A ∩ B A\cap B A∩B表示既喜欢数学又喜欢语文的人数, A ∪ B A\cup B A∪B表示喜欢数学或语文的人数)。
- 代入数据可得: 20 + 15 − 8 = 27 20 + 15 - 8 = 27 20+15−8=27人。
- 也可以通过画韦恩图来理解。先画两个相交的圆,分别表示喜欢数学和喜欢语文的学生集合,相交部分表示既喜欢数学又喜欢语文的学生。然后分别在圆中填入相应的人数,最后通过计算两个圆的总人数减去相交部分的重复人数,得到喜欢数学或语文的学生人数。
- 三集合容斥原理
- 例如,有 50 50 50名学生参加兴趣小组,其中参加数学兴趣小组的有 25 25 25人,参加语文兴趣小组的有 20 20 20人,参加英语兴趣小组的有 30 30 30人,同时参加数学和语文兴趣小组的有 10 10 10人,同时参加数学和英语兴趣小组的有 8 8 8人,同时参加语文和英语兴趣小组的有 6 6 6人,三个兴趣小组都参加的有 4 4 4人。求参加兴趣小组的学生共有多少人。
- 公式为: A ∪ B ∪ C = A + B + C − A ∩ B − B ∩ C − A ∩ C + A ∩ B ∩ C A\cup B\cup C = A + B + C - A\cap B - B\cap C - A\cap C + A\cap B\cap C A∪B∪C=A+B+C−A∩B−B∩C−A∩C+A∩B∩C。
- 代入数据可得: 25 + 20 + 30 − 10 − 8 − 6 + 4 = 55 25 + 20 + 30 - 10 - 8 - 6 + 4 = 55 25+20+30−10−8−6+4=55人。
- 同样可以借助韦恩图来分析,先画三个相交的圆分别表示三个兴趣小组的学生集合,然后按照题目中的条件在相应区域填入人数,最后通过计算得出总人数。容斥原理在解决有关集合交叉情况的计数问题中非常有用,能够清晰地梳理各种情况之间的关系,避免重复计算和遗漏。
二十六、抽屉原理进阶
- 至少数问题
- 把多于 k n + 1 kn+1 kn+1个的物体放到 n n n个抽屉里( k k k是正整数),那么至少有一个抽屉里要放进 k + 1 k + 1 k+1个物体。例如,有 10 10 10个苹果要放进 3 3 3个抽屉, 10 ÷ 3 = 3 ⋯ ⋯ 1 10\div3 = 3\cdots\cdots1 10÷3=3⋯⋯1,那么至少有一个抽屉里要放 3 + 1 = 4 3 + 1 = 4 3+1=4个苹果。
- 证明思路:假设每个抽屉最多放 k k k个物体,那么 n n n个抽屉最多放 k n kn kn个物体,而现在有 k n + 1 kn + 1 kn+1个物体,所以必然有一个抽屉要多放 1 1 1个,即至少有一个抽屉里要放进 k + 1 k + 1 k+1个物体。
- 抽屉原理的应用
- 例如,在一个班级里有 40 40 40名学生,他们的年龄都在 10 10 10到 12 12 12岁之间。那么至少有几名学生是同一年龄?
- 这里年龄有 10 10 10岁、 11 11 11岁、 12 12 12岁三种情况,相当于 3 3 3个抽屉, 40 40 40名学生相当于 40 40 40个物体。 40 ÷ 3 = 13 ⋯ ⋯ 1 40\div3 = 13\cdots\cdots1 40÷3=13⋯⋯1,所以至少有 13 + 1 = 14 13 + 1 = 14 13+1=14名学生是同一年龄。
- 再如,从 1 1 1到 20 20 20这 20 20 20个自然数中,任意选取 11 11 11个数,其中一定有两个数的差是 10 10 10。可以把 1 1 1到 20 20 20分成 ( 1 , 11 ) (1,11) (1,11), ( 2 , 12 ) (2,12) (2,12), ( 3 , 13 ) (3,13) (3,13), ⋯ \cdots ⋯, ( 10 , 20 ) (10,20) (10,20)这 10 10 10组,每组中两数之差为 10 10 10。选取 11 11 11个数时,根据抽屉原理,必然会有至少一组中的两个数都被选到,它们的差就是 10 10 10。
二十七、逻辑推理拓展
- 真假判断问题
- 有甲、乙、丙三人,甲说:“乙在说谎。”乙说:“丙在说谎。”丙说:“甲和乙都在说谎。”已知三人中只有一人说的是真话,那么谁说的是真话?
- 分析思路:假设甲说的是真话,那么乙说的就是假话,即丙说的是真话,这样就有甲和丙两人说真话,与题目中只有一人说真话矛盾;假设乙说的是真话,那么丙说的就是假话,即甲和乙至少有一人说的是真话,若甲说的是假话,那么符合只有一人说真话的条件;假设丙说的是真话,那么甲和乙都在说谎,这样乙说的就是真话,又产生矛盾。所以说真话的是乙。
- 条件推理问题
- 在一个岛上,住着三种人:说真话的人、说假话的人和有时说真话有时说假话的人。甲说:“我不是说假话的人。”乙说:“丙是说假话的人。”丙说:“丁是说假话的人。”丁说:“我不是说假话的人。”已知其中只有一人说的是真话,请问甲、乙、丙、丁分别是哪种人?
- 首先假设甲说的是真话,那么甲是说真话的人,此时乙说丙是说假话的人就可能是真也可能是假,丙说丁是说假话的人也不确定真假,丁说自己不是说假话的人也不确定真假,无法得出唯一结论,所以甲说的不是真话,即甲可能是说假话的人或者有时说真话有时说假话的人。
- 假设乙说的是真话,那么丙是说假话的人,丙说丁是说假话的就是假的,即丁是说真话的人,丁说自己不是说假话的人也符合,此时甲就只能是有时说真话有时说假话的人,符合只有一人说真话的条件。
- 假设丙说的是真话,那么丁是说假话的人,丁说自己不是说假话的就是假的,此时乙说丙是说假话的就矛盾了,所以丙说的不是真话,丙可能是说假话的人或者有时说真话有时说假话的人。
- 假设丁说的是真话,那么丁是说真话的人,丙说丁是说假话的就是假的,即丙是说真话的人,这样就有丁和丙两人说真话,与题目矛盾,所以丁说的不是真话,丁可能是说假话的人或者有时说真话有时说假话的人。
- 综上,甲是有时说真话有时说假话的人,乙是说真话的人,丙是说假话的人,丁是有时说真话有时说假话的人。
二十八、最值问题
- 数的最值
- 在给定条件下求数的最大值或最小值。例如,用 1 1 1、 2 2 2、 3 3 3、 4 4 4、 5 5 5这五个数字组成一个三位数乘两位数的乘法算式,要使乘积最大,应该是哪个算式?
- 思路:要使乘积最大,较大的数应在高位。三位数的百位和两位数的十位应是 4 4 4和 5 5 5,然后两位数的个位和三位数的十位应是 3 3 3和 2 2 2,最后三位数的个位是 1 1 1。经过尝试, 521 × 43 = 22403 521×43 = 22403 521×43=22403, 531 × 42 = 22302 531×42 = 22302 531×42=22302等,比较可得 52 × 431 = 22412 52×431 = 22412 52×431=22412是最大的乘积。
- 对于求最小值,思路相反,较小的数在高位,经过类似的分析和尝试来确定最小乘积的算式。
- 图形的最值
- 例如,在一个周长为 20 20 20厘米的长方形中,求面积的最大值。
- 对于长方形,周长 C = 2 × ( a + b ) C = 2×(a + b) C=2×(a+b)( a a a、 b b b为长和宽),已知 C = 20 C = 20 C=20,则 a + b = 10 a + b = 10 a+b=10。根据均值不等式,当 a = b = 5 a = b = 5 a=b=5时, a b ab ab最大,此时面积 S = a b = 25 S = ab = 25 S=ab=25平方厘米。也就是当长方形为正方形时,面积最大。
- 再如,在一个直角三角形中,一条直角边为 6 6 6厘米,求另一条直角边为多少时,三角形面积最大。
- 三角形面积 S = 1 2 a b S=\frac{1}{2}ab S=21ab( a a a、 b b b为直角边),已知一条直角边 a = 6 a = 6 a=6,则 S = 1 2 × 6 × b = 3 b S=\frac{1}{2}×6×b = 3b S=21×6×b=3b。由于斜边大于直角边,所以另一条直角边 b b b越大,面积越大,但 b b b要满足三角形三边关系,当 b b b趋近于斜边长度时面积最大,但在小学阶段通常不考虑这种极限情况,一般会给定一些限制条件,如 b b b为整数等,然后在这些条件下求面积的最大值。
二十九、周期余数应用
- 日期中的周期余数
- 例如,今天是星期三,再过 50 50 50天是星期几?
- 一周有 7 7 7天,是一个周期。 50 ÷ 7 = 7 ⋯ ⋯ 1 50\div7 = 7\cdots\cdots1 50÷7=7⋯⋯1,说明经过 7 7 7个完整的星期后还多 1 1 1天,今天是星期三,那么再过 7 7 7个星期还是星期三,再多 1 1 1天就是星期四。
- 再如,某个月的 1 1 1号是星期五,这个月有 31 31 31天,那么这个月的最后一天是星期几?
- 先算出 31 31 31天包含几个星期余几天, 31 ÷ 7 = 4 ⋯ ⋯ 3 31\div7 = 4\cdots\cdots3 31÷7=4⋯⋯3,说明经过 4 4 4个完整的星期后还多 3 3 3天, 1 1 1号是星期五,那么经过 4 4 4个星期还是星期五,再多 3 3 3天,就是星期一(星期五、星期六、星期日、星期一)。
- 数字排列中的周期余数
- 有一列数字按照“ 1 1 1、 2 2 2、 3 3 3、 4 4 4、 5 5 5、 6 6 6、 1 1 1、 2 2 2、 3 3 3、 4 4 4、 5 5 5、 6 ⋯ ⋯ 6\cdots\cdots 6⋯⋯”的顺序排列,问第 78 78 78个数字是多少?
- 可以看出这列数字是以“ 1 1 1、 2 2 2、 3 3 3、 4 4 4、 5 5 5、 6 6 6”这 6 6 6个数字为一个周期循环出现的。 78 ÷ 6 = 13 78\div6 = 13 78÷6=13,没有余数,说明第 78 78 78个数字是这个周期的最后一个数字,即 6 6 6。
- 如果问第 85 85 85个数字是多少, 85 ÷ 6 = 14 ⋯ ⋯ 1 85\div6 = 14\cdots\cdots1 85÷6=14⋯⋯1,余数是 1 1 1,那么第 85 85 85个数字就是这个周期的第一个数字,即 1 1 1。
三十、分数应用题拓展
- 量率对应问题
- 例如,一本书,小明第一天看了全书的 1 4 \frac{1}{4} 41,第二天看了全书的 1 3 \frac{1}{3} 31,还剩下 50 50 50页没看,这本书一共有多少页?
- 把这本书的总页数看作单位“ 1 1 1”,第一天看了 1 4 \frac{1}{4} 41,第二天看了 1 3 \frac{1}{3} 31,那么剩下的页数占比为 1 − 1 4 − 1 3 = 5 12 1-\frac{1}{4}-\frac{1}{3}=\frac{5}{12} 1−41−31=125。而剩下 50 50 50页,所以这本书一共有 50 ÷ 5 12 = 120 50\div\frac{5}{12}=120 50÷125=120页。
- 这里通过找出剩下页数对应的分率(占全书的比例),利用量率对应关系来求出全书的页数。
- 分数工程问题
- 一项工程,甲队单独做需要 1 2 \frac{1}{2} 21天完成,乙队单独做需要 1 3 \frac{1}{3} 31天完成,甲乙两队合作完成这项工程需要多少天?
- 把这项工程的工作量看作单位“ 1 1 1”,甲队的工作效率为 1 ÷ 1 2 = 2 1\div\frac{1}{2}=2 1÷21=2,乙队的工作效率为 1 ÷ 1 3 = 3 1\div\frac{1}{3}=3 1÷31=3。甲乙两队合作的工作效率为 2 + 3 = 5 2 + 3 = 5 2+3=5,所以合作完成需要的时间为 1 ÷ 5 = 1 5 1\div5=\frac{1}{5} 1÷5=51天。
- 通过将工程总量设为单位“ 1 1 1”,求出甲、乙两队的工作效率,进而计算出合作完成工程所需的时间,体现了分数在工程问题中的应用。
- 分数比例问题
- 甲、乙两数的比是 3 : 4 3:4 3:4,乙数比甲数多 1 5 \frac{1}{5} 51,甲数是多少?
- 设甲数是 3 x 3x 3x,则乙数是 4 x 4x 4x,乙数比甲数多 ( 4 x − 3 x ) ÷ 3 x = 1 3 (4x - 3x)\div3x=\frac{1}{3} (4x−3x)÷3x=31,而题目中说乙数比甲数多 1 5 \frac{1}{5} 51,所以 x = 1 5 ÷ ( 1 3 − 1 5 ) = 3 2 x=\frac{1}{5}\div(\frac{1}{3}-\frac{1}{5})=\frac{3}{2} x=51÷(31−51)=23,那么甲数是 3 x = 3 × 3 2 = 9 2 3x = 3×\frac{3}{2}=\frac{9}{2} 3x=3×23=29。
- 这里通过设未知数,利用分数比例关系和已知条件列出方程,求解得到甲数的值,展示了分数在比例问题中的运用和求解方法。
三十一、图形分割与拼接
- 图形分割
- 例如,将一个正方形分割成四个完全相同的小正方形。
- 方法:连接正方形的两条对角线,得到四个全等的直角三角形,再以对角线的交点为中心,将每个直角三角形分别旋转 9 0 ∘ 90^{\circ} 90∘,就可以得到四个完全相同的小正方形。
- 再如,将一个等边三角形分割成三个完全相同的小等腰三角形。
- 做法:取等边三角形三边的中点,然后连接相对的中点,就将等边三角形分割成了三个完全相同的小等腰三角形。
- 图形拼接
- 例如,用两个完全相同的直角三角形拼成一个长方形。
- 思路:两个直角三角形的直角边拼在一起,且它们的斜边在长方形的对边上,就可以拼成一个长方形。如果这两个直角三角形是等腰直角三角形,那么拼成的长方形就是正方形。
- 又如,用多个相同的小正方形拼成一个大正方形。
- 当小正方形的个数是完全平方数时可以拼成大正方形。比如有 9 9 9个小正方形,将它们排成 3 × 3 3×3 3×3的方阵,就可以拼成一个大正方形。
- 图形分割与拼接在实际生活中也有很多应用,比如在拼图游戏、地板砖的铺设设计、几何图形的证明等方面都能体现其重要性。它不仅能锻炼学生的空间想象力和动手操作能力,还能帮助学生更好地理解图形的性质和关系。
三十二、数列求和技巧
- 等差数列求和
- 除了前面提到的公式 S n = n ( a 1 + a n ) 2 S_{n}=\frac{n(a_{1}+a_{n})}{2} Sn=2n(a1+an)(其中 n n n为项数, a 1 a_{1} a1为首项, a n a_{n} an为末项),还有另外一种方法。
- 例如,求 1 + 2 + 3 + ⋯ + 100 1 + 2 + 3 + \cdots + 100 1+2+3+⋯+100的和。
- 可以将数列首尾依次相加, 1 + 100 = 101 1 + 100 = 101 1+100=101, 2 + 99 = 101 2 + 99 = 101 2+99=101, 3 + 98 = 101 3 + 98 = 101 3+98=101……一共有 50 50 50组这样的和,所以总和为 101 × 50 = 5050 101×50 = 5050 101×50=5050。
- 这种方法通过观察数列的特点,利用配对求和的方式,巧妙地计算出等差数列的和,能让学生更深入地理解等差数列的性质和求和原理。
- 等比数列求和
- 对于等比数列求和公式 S n = a 1 ( 1 − q n ) 1 − q S_{n}=\frac{a_{1}(1 - q^{n})}{1 - q} Sn=1−qa1(1−qn)( q ≠ 1 q\neq1 q=1, a 1 a_{1} a1为首项, q q q为公比, n n n为项数),在应用时需要注意公比的取值。
- 例如,求 2 + 4 + 8 + 16 + ⋯ + 2 10 2 + 4 + 8 + 16 + \cdots + 2^{10} 2+4+8+16+⋯+210的和。
- 这里 a 1 = 2 a_{1}=2 a1=2, q = 2 q = 2 q=2, n = 10 n = 10 n=10,代入公式可得:
- S 10 = 2 × ( 1 − 2 10 ) 1 − 2 = 2 11 − 2 = 2048 − 2 = 2046 S_{10}=\frac{2×(1 - 2^{10})}{1 - 2}=2^{11}-2 = 2048 - 2 = 2046 S10=1−22×(1−210)=211−2=2048−2=2046。
- 等比数列求和在一些数学问题和实际场景中,如金融利息计算、几何图形面积增长等方面都有应用,通过对其求和方法的学习,能培养学生的数学抽象和逻辑推理能力。
三十三、定义新运算
- 运算规则设定
- 例如,定义一种新运算“ △ \triangle △”,对于任意两个数 a a a和 b b b, a △ b = a × b + a + b a\triangle b = a×b + a + b a△b=a×b+a+b。
- 计算 3 △ 4 3\triangle 4 3△4的值,根据定义可得:
- 3 △ 4 = 3 × 4 + 3 + 4 = 12 + 3 + 4 = 19 3\triangle 4 = 3×4 + 3 + 4 = 12 + 3 + 4 = 19 3△4=3×4+3+4=12+3+4=19。
- 再如,定义“ ⊙ \odot ⊙”运算, m ⊙ n = m 2 − n 2 m\odot n = m^{2}-n^{2} m⊙n=m2−n2,求 5 ⊙ ( 2 ⊙ 1 ) 5\odot(2\odot 1) 5⊙(2⊙1)的值。
- 先计算 2 ⊙ 1 = 2 2 − 1 2 = 4 − 1 = 3 2\odot 1 = 2^{2}-1^{2}=4 - 1 = 3 2⊙1=22−12=4−1=3,然后 5 ⊙ ( 2 ⊙ 1 ) = 5 ⊙ 3 = 5 2 − 3 2 = 25 − 9 = 16 5\odot(2\odot 1)=5\odot 3 = 5^{2}-3^{2}=25 - 9 = 16 5⊙(2⊙1)=5⊙3=52−32=25−9=16。
- 解题思路与方法
- 解决定义新运算问题,关键是要理解所定义的运算规则,按照规则将给定的数代入进行计算。在有多层运算时,要先计算内层括号里的新运算,逐步向外计算。
- 同时,可以通过举例和多做练习来熟悉不同的新运算规则,培养灵活运用数学知识的能力。这种定义新运算的问题能拓展学生的思维,让学生摆脱传统运算的固定模式,提高对数学运算的理解和创新能力。
三十四、数学游戏中的策略
- 取棋子游戏
- 例如,有一堆棋子共 20 20 20个,甲乙两人轮流取棋子,每次可取 1 1 1个、 2 2 2个或 3 3 3个,谁取到最后一个棋子谁获胜。若甲先取,怎样取才能保证甲获胜?
- 解题思路:要想保证甲获胜,甲需要在最后一次取棋子时取到第 20 20 20个棋子。那么在这之前,要使得乙取完棋子后剩下的棋子数是 4 4 4的倍数。因为乙每次可取 1 1 1个、 2 2 2个或 3 3 3个,当乙取完后剩下 4 4 4的倍数时,甲再取,就可以保证两人一轮共取 4 4 4个棋子(如乙取 1 1 1个,甲就取 3 3 3个;乙取 2 2 2个,甲就取 2 2 2个;乙取 3 3 3个,甲就取 1 1 1个)。
- 开始时棋子有 20 20 20个, 20 ÷ 4 = 5 20\div4 = 5 20÷4=5,没有余数,所以甲先取 2 2 2个棋子,此时剩下 18 18 18个棋子是 4 4 4的倍数。然后不管乙取几个棋子,甲都按照上述策略取,就能保证甲取到最后一个棋子获胜。
- 报数游戏
- 甲乙两人从 1 1 1开始轮流报数,每次报数可以是 1 1 1个、 2 2 2个或 3 3 3个,谁报到 30 30 30谁获胜。若甲先报,怎样报数甲才能获胜?
- 同样的道理,要让甲报到 30 30 30获胜,就要在甲报数之前,让乙报完数后剩下的数是 4 4 4的倍数。 30 ÷ 4 = 7 ⋯ ⋯ 2 30\div4 = 7\cdots\cdots2 30÷4=7⋯⋯2,所以甲先报 2 2 2个数,剩下 28 28 28个数是 4 4 4的倍数。之后乙报数,甲根据乙报的个数,按照两人一轮报 4 4 4个数的策略进行报数,甲就能获胜。
- 数学游戏中的策略问题能培养学生的逻辑思维和推理能力,让学生在游戏中体会数学的乐趣和实用性,学会运用数学方法解决实际问题,提高竞争意识和决策能力。
三十五、行程问题中的多次相遇
- 两地往返相遇
- 甲、乙两人分别从 A A A、 B B B两地同时出发,相向而行,甲的速度为 v 1 v_{1} v1,乙的速度为 v 2 v_{2} v2, A A A、 B B B两地相距 s s s。
- 第一次相遇时,两人共走了一个全程 s s s,所用时间 t 1 = s v 1 + v 2 t_{1}=\frac{s}{v_{1}+v_{2}} t1=v1+v2s。
- 第一次相遇后,两人继续前行,到达对方出发点后立即返回,第二次相遇时,两人共走了三个全程 3 s 3s 3s,所用时间 t 2 = 3 s v 1 + v 2 t_{2}=\frac{3s}{v_{1}+v_{2}} t2=v1+v23s。
- 以此类推,第 n n n次相遇时,两人共走了 ( 2 n − 1 ) s (2n - 1)s (2n−1)s个全程,所用时间 t n = ( 2 n − 1 ) s v 1 + v 2 t_{n}=\frac{(2n - 1)s}{v_{1}+v_{2}} tn=v1+v2(2n−1)s。
- 例如,甲、乙两人速度分别为 4 4 4米/秒和 6 6 6米/秒, A A A、 B B B两地相距 100 100 100米,求第二次相遇时所用的时间和两人分别走的路程。
- 先求第二次相遇时间 t 2 = 3 × 100 4 + 6 = 30 t_{2}=\frac{3×100}{4 + 6}=30 t2=4+63×100=30秒。
- 甲走的路程 s 甲 = 4 × 30 = 120 s_{甲}=4×30 = 120 s甲=4×30=120米,乙走的路程 s 乙 = 6 × 30 = 180 s_{乙}=6×30 = 180 s乙=6×30=180米。
- 同地同向出发相遇
- 甲、乙两人从同一地点同时同向出发,甲的速度为 v 1 v_{1} v1,乙的速度为 v 2 v_{2} v2( v 2 > v 1 v_{2}\gt v_{1} v2>v1)。
- 第一次相遇时,乙比甲多走了一圈,即 s s s,所用时间 t 1 = s v 2 − v 1 t_{1}=\frac{s}{v_{2}-v_{1}} t1=v2−v1s。
- 第二次相遇时,乙比甲多走了两圈,所用时间 t 2 = 2 s v 2 − v 1 t_{2}=\frac{2s}{v_{2}-v_{1}} t2=v2−v12s。
- 第 n n n次相遇时,乙比甲多走了 n n n圈,所用时间 t n = n s v 2 − v 1 t_{n}=\frac{ns}{v_{2}-v_{1}} tn=v2−v1ns。
- 例如,在一个周长为 400 400 400米的圆形跑道上,甲的速度为 3 3 3米/秒,乙的速度为 5 5 5米/秒,求两人第二次相遇时所用的时间。
- t 2 = 2 × 400 5 − 3 = 400 t_{2}=\frac{2×400}{5 - 3}=400 t2=5−32×400=400秒。
- 多次相遇问题是行程问题中的一个难点,需要学生深刻理解相遇过程中两人所走路程与全程的关系,通过画图等方式辅助分析,培养学生的空间想象能力和逻辑推理能力,提高解决复杂问题的能力。
三十六、浓度问题的变形与拓展
- 溶液混合问题
- 例如,有两种浓度分别为 20 % 20\% 20%和 40 % 40\% 40%的盐水,它们的质量比是 3 : 2 3:2 3:2。将这两种盐水混合在一起,求混合后盐水的浓度。
- 首先分别算出两种盐水中盐的质量。设 20 % 20\% 20%的盐水质量为 3 x 3x 3x,则其中盐的质量为 3 x × 20 % = 0.6 x 3x\times20\% = 0.6x 3x×20%=0.6x; 40 % 40\% 40%的盐水质量为 2 x 2x 2x,其中盐的质量为 2 x × 40 % = 0.8 x 2x\times40\% = 0.8x 2x×40%=0.8x。
- 混合后盐水的总质量为 3 x + 2 x = 5 x 3x + 2x = 5x 3x+2x=5x,盐的总质量为 0.6 x + 0.8 x = 1.4 x 0.6x + 0.8x = 1.4x 0.6x+0.8x=1.4x。
- 那么混合后盐水的浓度为 1.4 x 5 x × 100 % = 28 % \frac{1.4x}{5x}\times100\% = 28\% 5x1.4x×100%=28%。
- 对于多种不同浓度溶液混合的问题,都可以按照这种方法,先分别求出各溶液中溶质的质量,再求出混合后溶液的总质量和溶质的总质量,最后计算混合后溶液的浓度。
- 浓度变化问题
- 例如,一杯盐水的质量为 100 100 100克,浓度为 10 % 10\% 10%。现在向盐水中加入 5 5 5克盐,求加入盐后盐水的浓度。
- 原来盐水中盐的质量为 100 × 10 % = 10 100\times10\% = 10 100×10%=10克,加入 5 5 5克盐后,盐的总质量变为 10 + 5 = 15 10 + 5 = 15 10+5=15克,盐水的总质量变为 100 + 5 = 105 100 + 5 = 105 100+5=105克。
- 则加入盐后盐水的浓度为 15 105 × 100 % ≈ 14.29 % \frac{15}{105}\times100\%\approx14.29\% 10515×100%≈14.29%。
- 再如,有一杯浓度为 25 % 25\% 25%的糖水 200 200 200克,要使糖水的浓度变为 40 % 40\% 40%,需要蒸发掉多少克水?
- 糖水中糖的质量为 200 × 25 % = 50 200\times25\% = 50 200×25%=50克。当浓度变为 40 % 40\% 40%时,糖水的质量为 50 ÷ 40 % = 125 50\div40\% = 125 50÷40%=125克。
- 所以需要蒸发掉的水的质量为 200 − 125 = 75 200 - 125 = 75 200−125=75克。
- 解决浓度变化问题,关键是要抓住溶质质量不变这一要点,根据浓度公式来计算变化后的浓度或溶液质量等相关量。
三十七、图形的旋转与对称应用
- 图形旋转
- 例如,一个边长为 4 4 4厘米的正方形 A B C D ABCD ABCD,以点 A A A为中心,将正方形顺时针旋转 9 0 ∘ 90^{\circ} 90∘,得到正方形 A ′ B ′ C ′ D ′ A'B'C'D' A′B′C′D′。求旋转后图形中阴影部分的面积。
- 分析:旋转后,阴影部分是一个直角三角形,它的两条直角边分别是正方形的边长 4 4 4厘米。
- 所以阴影部分面积为 1 2 × 4 × 4 = 8 \frac{1}{2}\times4\times4 = 8 21×4×4=8平方厘米。
- 图形旋转在解决几何问题中常常可以通过将图形进行旋转,使分散的条件集中起来,从而找到解题的思路。比如在一些求图形面积或证明几何关系的问题中,合理运用图形旋转可以简化问题的解决过程。
- 图形对称
- 例如,有一个等腰梯形 A B C D ABCD ABCD,上底 A D = 3 AD = 3 AD=3厘米,下底 B C = 7 BC = 7 BC=7厘米,高为 4 4 4厘米。求这个等腰梯形的面积。
- 可以通过作等腰梯形的对称轴,将等腰梯形分成两个全等的直角三角形和一个矩形。
- 其中矩形的长为 3 3 3厘米,宽为 4 4 4厘米,直角三角形的一条直角边为 ( 7 − 3 ) ÷ 2 = 2 (7 - 3)\div2 = 2 (7−3)÷2=2厘米,另一条直角边为 4 4 4厘米。
- 那么等腰梯形的面积为矩形面积加上两个直角三角形的面积,即 3 × 4 + 2 × 1 2 × 2 × 4 = 20 3×4 + 2×\frac{1}{2}×2×4 = 20 3×4+2×21×2×4=20平方厘米。
- 图形对称可以帮助我们更好地理解图形的性质,利用对称关系将复杂的图形分解为简单的图形进行计算,在解决几何问题时能提高解题效率和准确性,培养学生的空间观念和几何直观能力。
三十八、逻辑推理中的图表法
- 列表推理
- 例如,甲、乙、丙三人分别是医生、教师、警察。已知甲和教师不同岁,教师比乙年龄小,丙比警察年龄大。用列表法来判断甲、乙、丙三人的职业。
- 首先列出一个表格,表头分别为“人物”“医生”“教师”“警察”。
- 因为甲和教师不同岁,所以在甲和教师对应的格子里打“×”;教师比乙年龄小,所以在乙和教师对应的格子里打“×”;丙比警察年龄大,所以在丙和警察对应的格子里打“×”。
- 此时可以看到教师这一行只有丙对应的格子可以填“√”,那么丙是教师。因为丙是教师,所以丙不是医生和警察,在相应格子里打“×”。又因为甲不是教师,所以甲可能是医生或警察,乙也可能是医生或警察。但由于丙比警察年龄大,且丙是教师,所以警察不可能是乙,那么乙是医生,甲就是警察。
- 通过列表法,可以清晰地整理信息,排除不可能的情况,逐步确定每个人的职业,使复杂的逻辑推理问题变得更加直观和易于解决。
- 画图推理
- 例如,有 A A A、 B B B、 C C C、 D D D四本书放在书架上, A A A在 B B B的左边, C C C在 B B B的右边, D D D在 C C C的左边。用画图的方法表示出这四本书的位置关系。
- 可以先画一条线表示书架,然后根据条件依次在线上标注书的位置。
- 因为 A A A在 B B B的左边,先画 A A A,再在 A A A的右边画 B B B; C C C在 B B B的右边,就在 B B B的右边画 C C C; D D D在 C C C的左边,最后在 C C C的左边画 D D D。
- 画图后可以清晰地看出四本书的位置关系为 A A A、 D D D、 B B B、 C C C(从左到右)。
- 画图推理在解决一些有关位置关系、逻辑顺序等问题时非常有效,它能够将抽象的文字信息转化为直观的图形,帮助学生更好地理解和分析问题,培养学生的逻辑思维和空间想象力。
三十九、统筹优化中的时间安排策略
- 生产任务的时间安排
- 例如,一个工厂有 A A A、 B B B、 C C C三件产品需要生产,生产 A A A产品需要 5 5 5小时,生产 B B B产品需要 8 8 8小时,生产 C C C产品需要 3 3 3小时。工厂有两台机器,如何安排生产顺序,能使总生产时间最短?
- 分析:要使总生产时间最短,应按照生产时间从小到大的顺序安排生产,即先生产 C C C产品,再生产 A A A产品,最后生产 B B B产品。
- 当生产 C C C产品时,两台机器都可用,用时 3 3 3小时;生产 A A A产品时,选择一台机器生产,用时 5 5 5小时;生产 B B B产品时,用剩下的一台机器生产,用时 8 8 8小时。
- 总生产时间为 3 + ( 3 + 5 ) + ( 3 + 5 + 8 ) = 27 3 + (3 + 5)+(3 + 5 + 8)=27 3+(3+5)+(3+5+8)=27小时。
- 通过合理安排生产顺序,充分利用机器的工作时间,避免了机器的闲置和等待时间,从而达到缩短总生产时间的目的,提高了生产效率。
- 活动安排的时间优化
- 例如,学校要组织一场文艺演出,有节目排练、舞台布置、演员化妆等多项任务。节目排练需要 2 2 2小时,舞台布置需要 3 3 3小时(可与节目排练同时进行一部分),演员化妆需要 1.5 1.5 1.5小时(可在节目排练结束后进行)。如何安排这些任务的顺序,能使整个准备工作在最短时间内完成?
- 首先开始节目排练和舞台布置的一部分(假设舞台布置可先独立进行 1 1 1小时), 1 1 1小时后,节目排练继续,舞台布置剩下的 2 2 2小时与节目排练的剩余 1 1 1小时同时进行。节目排练完成后进行演员化妆 1.5 1.5 1.5小时。
- 这样总时间为 1 + ( 2 − 1 ) + 1.5 = 3.5 1+(2 - 1)+1.5 = 3.5 1+(2−1)+1.5=3.5小时。
- 在安排活动时,要充分考虑各项任务之间的并行关系和先后顺序,合理利用时间的重叠部分,最大限度地减少总时间,体现了统筹优化在实际生活中的应用,培养学生合理规划时间和资源的能力。
四十、数学竞赛中的解题技巧与策略
- 巧妙转化问题
- 例如,在一个数学竞赛中,遇到这样一道题:求 1 2 + 1 4 + 1 8 + ⋯ + 1 2 10 \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{10}} 21+41+81+⋯+2101的值。
- 可以将这个式子转化为一个等比数列求和的问题,首项 a 1 = 1 2 a_{1}=\frac{1}{2} a1=21,公比 q = 1 2 q=\frac{1}{2} q=21,项数 n = 10 n = 10 n=10。
- 根据等比数列求和公式 S n = a 1 ( 1 − q n ) 1 − q S_{n}=\frac{a_{1}(1 - q^{n})}{1 - q} Sn=1−qa1(1−qn),代入计算可得:
- S 10 = 1 2 ( 1 − 1 2 10 ) 1 − 1 2 = 1 − 1 2 10 = 1023 1024 S_{10}=\frac{\frac{1}{2}(1-\frac{1}{2^{10}})}{1-\frac{1}{2}} = 1-\frac{1}{2^{10}}=\frac{1023}{1024} S10=1−2121(1−2101)=1−2101=10241023。
- 通过将不熟悉的问题转化为熟悉的数学模型,如将数列求和问题转化为等比数列求和,能够利用已有的知识和方法快速解决问题,提高解题效率和准确性。
- 利用特殊值法
- 比如,在一个关于函数的数学竞赛题中,已知函数 f ( x + y ) = f ( x ) + f ( y ) f(x + y)=f(x)+f(y) f(x+y)=f(x)+f(y)对于任意实数 x x x、 y y y都成立,要判断函数 f ( x ) f(x) f(x)的奇偶性。
- 可以先令 x = 0 x = 0 x=0, y = 0 y = 0 y=0,则 f ( 0 + 0 ) = f ( 0 ) + f ( 0 ) f(0 + 0)=f(0)+f(0) f(0+0)=f(0)+f(0),解得 f ( 0 ) = 0 f(0)=0 f(0)=0。
- 再令 y = − x y=-x y=−x,则 f ( x + ( − x ) ) = f ( x ) + f ( − x ) f(x + (-x))=f(x)+f(-x) f(x+(−x))=f(x)+f(−x),即 f ( 0 ) = f ( x ) + f ( − x ) f(0)=f(x)+f(-x) f(0)=f(x)+f(−x),因为 f ( 0 ) = 0 f(0)=0 f(0)=0,所以 f ( x ) + f ( − x ) = 0 f(x)+f(-x)=0 f(x)+f(−x)=0,即 f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x),从而得出函数 f ( x ) f(x) f(x)是奇函数。
- 特殊值法在一些抽象的数学问题中非常实用,通过选取特殊的值代入题目条件,能够快速得出一些关键信息,帮助我们判断函数的性质、图形的特征等,拓宽了解题思路,提高解题的灵活性和创造性。
- 分类讨论思想
- 在数学竞赛中,经常会遇到需要分类讨论的问题。例如,在一个几何图形中,已知一个三角形的一条边长度不确定,但已知它的取值范围,要讨论这个三角形的面积情况。
- 假设三角形的底边长为 a a a( a a a的取值范围已知),高为 h h h。根据三角形面积公式 S = 1 2 a h S=\frac{1}{2}ah S=21ah。
- 当 a a a取最小值时,计算出面积的最小值;当 a a a取最大值时,计算出面积的最大值。然后根据 a a a在不同取值范围内的变化,分析面积的变化情况,进行分类讨论。
- 分类讨论思想能够使我们全面、系统地考虑问题,避免遗漏各种可能的情况,培养学生严谨的逻辑思维和全面分析问题的能力,在解决复杂的数学竞赛问题中具有重要作用。