图像处理
南山小翁
活在当下,要有思想,每个人不是随随便便就能成功!
展开
-
图像处理常用算法(基础)
同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的转载 2016-01-16 20:13:57 · 14419 阅读 · 0 评论 -
情感计算与语言认知成像讲座——内容及体会
写这篇博客的目的:主要是记录我的一些感受,怕遗忘;另一个目的就是分享一种处理问题的方式,希望对有需求的人有所帮助。 情感信息提取可以通过“生物信信号”进行分析、判断。但是,在非医学的应用中,这种方法大大增加了实验了难度。相反,通过对人脸检测和分析大大提高了实验的可行性,主要是利用人物的面部动作。实验样本:视频。 提及一下,所谓的情感计算主要是分为三个部分:机原创 2016-10-27 09:23:44 · 809 阅读 · 0 评论 -
利用Dlib进行人脸特征局部定位
void CDlib_MFCDlg::OnBnClickedFace(){ // TODO: 在此添加控件通知处理程序代码 char img_file[]="G:\\Source\\111.jpg"; char mark_file[]="G:\\Source\\shape_predictor_68_face_landmarks.dat";//必须导入该模型 Mat img=imread(原创 2016-11-10 13:17:46 · 2920 阅读 · 1 评论 -
KMeans——之我见
在讲解KMeans算法聚类之前,先推出一个场景:在上政治课的过程中,有N个班级,每个班级为M人,按照正常逻辑,相熟悉的人,会坐在一起。但是,不代表每个班的同学恰巧都坐在一起,为了把每个班的同学聚集在一起,我们需要给每个同学贴一个Label。同时,让每个班的班长站起来,其余同学根据自己身上的Label(即:属于哪个班集体),自动的和身边的人换座,向班长靠拢。这个过程和KMeans所表达的思想基本上是原创 2016-10-30 19:38:59 · 479 阅读 · 0 评论 -
KMeans算法的实现
//咱走的不是流量,走的是心#include#include#include#include#include#includeusing namespace std;#define Length 5 //数据维数(每个数据集,5维向量)#define K 5 //类别数(分为5类)#define Psize 50原创 2016-11-01 15:53:41 · 416 阅读 · 0 评论 -
矩阵和特征值的本质
理解矩阵和特征向量的本质原文地址最近复习矩阵论中,又是一堆定理和证明突然发现学了这么常时间的矩阵论、线性代数,记住的只是一堆莫名其妙的定理而已,一些本质的东西都没有搞清楚。比如,为什么要有矩阵,它仅仅是一堆数的组合吗,集合也是数的组合,为什么不能代替矩阵?特征值和特征向量的含义是什么?描述的是什么“特征”?矩阵乘法的含义是什么?转载 2017-03-06 09:09:38 · 16402 阅读 · 7 评论 -
图像的裁剪—首先获取图像的源点,根据源点裁出所需的图像大小
int CutOut(IplImage* src, IplImage* dst, int x, int y, int w,int h){ //x,y为矩形框左上角点坐标,w为宽度,h为高度 int width_src = src->widthStep; int height_src = src->height; byte* gray_src = (byte*)src->imageData原创 2017-05-31 08:57:59 · 1080 阅读 · 1 评论