接龙数列——蓝桥杯十四届2023

文章介绍了如何使用递推方法解决最长接龙子序列问题,通过dp数组记录末尾数字的最长序列长度,避免了O(n^2)的时间复杂度,展示了简洁且高效的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
分析
大致一看,不过是求最长接龙子序列的长度,然后答案就是n-最长接龙子序列的长度,但是如何来求呢?同学们很容易想到要去用动态规划,每加入一个第i个数Ai,然后在0~i-1个数中找能与Ai对接的最长的接龙子序列,不过这种方法时间复杂度为O(n^2),超时了,这里有一种更为巧妙的方法。我们发现对于首位数字和尾位数字均在 0 ~9范围内,我们可以用dp[i](0<=i<=9)表示末尾数字为i的最长接龙子序列长度。那么由此能得到递推公式,每加入一个数字m,dp[back(m)]=max(dp[back(m)],dp[front(m)]+1),(其中back(m)表示数字m的尾位,front(m)表示数字m的首位),然后给出我们的代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define endl '\n'
int getint(int n){//获取数字首位
	while(n>=10)n/=10;
	return n;
}
int main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int n,m;
	cin>>n;
	vector<int> dp(10,0);
	int result=0;
	for(int i=0;i<n;i++){
		cin>>m;
		dp[m%10]=max(dp[m%10],dp[getint(m)]+1);
	}
	for(int i=0;i<10;i++){
		result=max(result,dp[i]);
	}
	cout<<n-result<<endl;
	return 0;
}

怎么样?是不是代码非常简洁,这道题真的是太妙了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值