1、顺序存储的二叉树的最近的公共祖先问题
设顺序存储的二叉树中有编号为i和j的两个结点,请设计算法求出它们最近的公共祖先结点的编号和值。
输入:输入顺序存储的最大容量n、n个非负整数以及一对结点编号i和j。
输出:输出编号为i和j的两个结点最近的公共祖先结点的编号和值。
#include<stdio.h>
int findAncestor(int T[],int i,int j);
int main()
{
int n,i;
scanf("%d",&n);
int T[n];
for(i=1;i<=n;i++)
{
scanf("%d",&T[i]);
}
int I,J; //结点编号i和j
scanf("%d%d",&I,&J);
if(T[I]==0||T[J]==0)//如果i或j对应的是空结点
{
if(T[I]==0)
{
printf("ERROR: T[%d] is NULL",I);
}
else
{
printf("ERROR: T[%d] is NULL",J);
}
}
else
{
int x,y; //x,y分别为公共祖先的编号和值
x=findAncestor(T,I,J);
y=T[x];
printf("%d %d",x,y);
}
return 0;
}
int findAncestor(int T[],int i,int j)
{
if(i==j)
{
return i;
}
else
{
if(i>j)
{
i/=2;//求父节点
}
else
{
j/=2;
}
return findAncestor(T,i,j);//递归求祖先结点
}
}
优化目标:暂无。
ps:本题采用递归的方式求公共祖先,由顺序存储的二叉树的性质可知,数组下标(编号)/2的值表示父节点。编号较大的一方应在编号较小的一方的同一层或者下面,因此不断将编号较大的结点/2求父节点,直到两个结点相同,此时该结点就是原本两个结点最近的公共祖先。
2、邻接矩阵存储图的深度优先遍历
试实现邻接矩阵存储图的深度优先遍历。
输入:输入创建图所需的结点以及深度优先遍历的出发顶点V。
输出:输出该图的深度优先遍历序列。
#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* 最大顶点数设为10 */
#define INFINITY 65535 /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
typedef int WeightType; /* 边的权值设为整型 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */
MGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
printf(" %d", V);
}
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) );
int main()
{
MGraph G;
Vertex V;
G = CreateGraph();
scanf("%d", &V);
printf("DFS from %d:", V);
DFS(G, V, Visit);
return 0;
}
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) ) {
Visited[V]=true;//先设置当前结点已访问
Visit(V); //访问当前结点
for(int i=0;i<Graph->Nv;i ++) {//遍历剩下结点
if(!Visited[i]&&Graph->G[V][i]!=INFINITY)// 当结点没有被访问过且当前结点V到该结点有路径时,递归访问该结点
DFS(Graph,i,Visit);
}
}
优化目标:暂无。
ps:通过递归工作栈实现图的深度优先遍历。
3、邻接表存储图的广度优先遍历
输入:输入创建图所需的结点以及广度优先遍历的出发顶点S。
输出:输出该图的广度优先遍历序列。
#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10 /* 最大顶点数设为10 */
typedef int Vertex; /* 用顶点下标表示顶点,为整型 */
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode{
Vertex AdjV; /* 邻接点下标 */
PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};
/* 顶点表头结点的定义 */
typedef struct Vnode{
PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum]; /* AdjList是邻接表类型 */
/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{
int Nv; /* 顶点数 */
int Ne; /* 边数 */
AdjList G; /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */
LGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
printf(" %d", V);
}
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
int main()
{
LGraph G;
Vertex S;
G = CreateGraph();
scanf("%d", &S);
printf("BFS from %d:", S);
BFS(G, S, Visit);
return 0;
}
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )
{
int queue[20]; //定义一个队列
int l=0,r=0;
queue[r++]=S;//S入队并访问
Visit(S);
Visited[S]=true;
PtrToAdjVNode tmp;
while(l!=r) //队列不空
{
tmp=Graph->G[queue[l++]].FirstEdge; //s出队了,tmp表示s的邻接点
while(tmp)
{
Vertex pos=tmp->AdjV;//邻接点下标
if(!Visited[pos])//没被访问过
{
Visit(pos);
Visited[pos]=true;
queue[r++]=pos;//该点入队
}
tmp=tmp->Next;//下一个邻接点
}
}
}
优化目标:暂无。
总结:今天复习了图的相关知识,学习了图的两种存储方式以及深度优先遍历和广度优先遍历,明天计划继续学习图。另外需要注意图的遍历分别与两种不同存储方式的结合,掌握邻接表和邻接矩阵的访问操作。图的深度优先遍历和二叉树的先序遍历类似,都可以通过递归实现;图的广度优先遍历和二叉树的层次遍历类似,都需借助队列实现。