C语言(七)

本文介绍了如何在顺序存储的二叉树中寻找两个结点最近公共祖先的算法,同时提供了邻接矩阵和邻接表存储图的深度优先遍历和广度优先遍历实现。通过递归和队列技巧,展示了图的这两种常见遍历方法及其在信息技术中的应用。
摘要由CSDN通过智能技术生成

1、顺序存储的二叉树的最近的公共祖先问题
设顺序存储的二叉树中有编号为i和j的两个结点,请设计算法求出它们最近的公共祖先结点的编号和值。

输入:输入顺序存储的最大容量n、n个非负整数以及一对结点编号i和j。

输出:输出编号为i和j的两个结点最近的公共祖先结点的编号和值。

#include<stdio.h>

int findAncestor(int T[],int i,int j);
int main()
{
    int n,i;
    scanf("%d",&n);
    int T[n];
    for(i=1;i<=n;i++)
    {
        scanf("%d",&T[i]);
    }
    int I,J;  //结点编号i和j
    scanf("%d%d",&I,&J);
    if(T[I]==0||T[J]==0)//如果i或j对应的是空结点
    {
        if(T[I]==0)
        {
            printf("ERROR: T[%d] is NULL",I);
        }
        else
        {
            printf("ERROR: T[%d] is NULL",J);
        }
    }
    else
    {
        int x,y; //x,y分别为公共祖先的编号和值
        x=findAncestor(T,I,J);
        y=T[x];
        printf("%d %d",x,y);
    }
    return 0;
}

int findAncestor(int T[],int i,int j)
{
    if(i==j)
    {
        return i;
    }
    else
    {
        if(i>j)
        {
            i/=2;//求父节点
        }
        else
        {
            j/=2;
        }
        return findAncestor(T,i,j);//递归求祖先结点
    }
}

优化目标:暂无。
ps:本题采用递归的方式求公共祖先,由顺序存储的二叉树的性质可知,数组下标(编号)/2的值表示父节点。编号较大的一方应在编号较小的一方的同一层或者下面,因此不断将编号较大的结点/2求父节点,直到两个结点相同,此时该结点就是原本两个结点最近的公共祖先。

2、邻接矩阵存储图的深度优先遍历
试实现邻接矩阵存储图的深度优先遍历。

输入:输入创建图所需的结点以及深度优先遍历的出发顶点V。

输出:输出该图的深度优先遍历序列。

#include <stdio.h>
typedef enum {false, true} bool;
#define MaxVertexNum 10  /* 最大顶点数设为10 */
#define INFINITY 65535   /* ∞设为双字节无符号整数的最大值65535*/
typedef int Vertex;      /* 用顶点下标表示顶点,为整型 */
typedef int WeightType;  /* 边的权值设为整型 */

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;  /* 顶点数 */
    int Ne;  /* 边数   */
    WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
bool Visited[MaxVertexNum]; /* 顶点的访问标记 */

MGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */

void Visit( Vertex V )
{
    printf(" %d", V);
}
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) );
int main()
{
    MGraph G;
    Vertex V;

    G = CreateGraph();
    scanf("%d", &V);
    printf("DFS from %d:", V);
    DFS(G, V, Visit);
    return 0;
}

void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) ) {
    Visited[V]=true;//先设置当前结点已访问
    Visit(V); //访问当前结点
    for(int i=0;i<Graph->Nv;i ++) {//遍历剩下结点
        if(!Visited[i]&&Graph->G[V][i]!=INFINITY)// 当结点没有被访问过且当前结点V到该结点有路径时,递归访问该结点
        	DFS(Graph,i,Visit);
    }
}

优化目标:暂无。
ps:通过递归工作栈实现图的深度优先遍历。

3、邻接表存储图的广度优先遍历

输入:输入创建图所需的结点以及广度优先遍历的出发顶点S。

输出:输出该图的广度优先遍历序列。

#include <stdio.h>

typedef enum {false, true} bool;
#define MaxVertexNum 10   /* 最大顶点数设为10 */
typedef int Vertex;       /* 用顶点下标表示顶点,为整型 */

/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};

/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum];     /* AdjList是邻接表类型 */

/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */

bool Visited[MaxVertexNum]; /* 顶点的访问标记 */

LGraph CreateGraph(); /* 创建图并且将Visited初始化为false;裁判实现,细节不表 */
void Visit( Vertex V )
{
    printf(" %d", V);
}
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) );
int main()
{
    LGraph G;
    Vertex S;

    G = CreateGraph();
    scanf("%d", &S);
    printf("BFS from %d:", S);
    BFS(G, S, Visit);

    return 0;
}

void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) )
{
    int queue[20]; //定义一个队列
    int l=0,r=0;
    queue[r++]=S;//S入队并访问
    Visit(S);
    Visited[S]=true;
    PtrToAdjVNode tmp;
    while(l!=r) //队列不空
    {
        tmp=Graph->G[queue[l++]].FirstEdge; //s出队了,tmp表示s的邻接点
        while(tmp)
        {
            Vertex pos=tmp->AdjV;//邻接点下标
            if(!Visited[pos])//没被访问过
            {
                Visit(pos);
                Visited[pos]=true;
                queue[r++]=pos;//该点入队
            }
            tmp=tmp->Next;//下一个邻接点
        }
    }
}

优化目标:暂无。

总结:今天复习了图的相关知识,学习了图的两种存储方式以及深度优先遍历和广度优先遍历,明天计划继续学习图。另外需要注意图的遍历分别与两种不同存储方式的结合,掌握邻接表和邻接矩阵的访问操作。图的深度优先遍历和二叉树的先序遍历类似,都可以通过递归实现;图的广度优先遍历和二叉树的层次遍历类似,都需借助队列实现。

答案:此问题可以使用最近公共祖先(LCA)算法来解决。该算法的基本思想是,从该二叉树的根节点开始,搜索编号为i和j的两个结点,然后将它们检查到的最近公共祖先节点的编号和值记录下来,即为最终的答案。根据您的描述,您想要设计一个算法来确定二叉树中具有标号为 i 和 j 的两个结点最近公共祖先的编号和值。 一种常见的算法是,首先从根节点开始遍历二叉树,查找第一个结点 i 和第二个结点 j 的路径。然后,比较这两条路径上最后一个相同的结点,这个结点就是最近公共祖先。如果两个结点没有公共祖先,则返回 null。 为了实现这个算法,您可以使用递归或迭代的方式遍历二叉树。下面是一个递归的实现示例代码: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode: if not root or root == p or root == q: return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if left and right: return root elif left: return left else: return right ``` 在上面的示例代码中,我们首先检查根节点是否为空或与 p 或 q 相等。如果是这样,我们就返回根节点。否则,我们递归地遍历左子树和右子树,分别查找 p 和 q 的路径。如果在左子树和右子树中都找到了 p 和 q,则当前节点就是它们的最近公共祖先。否则,我们继续向上递归。 在找到最近公共祖先后,您可以返回该结点编号和值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值