A - HRZ的序列
题目
样例
输入
2
5
1 2 3 4 5
5
1 2 3 4 5
输出
NO
NO
数据范围
解题思路
序列中的所有数字都只有三种操作:
加K
减K
不变
所以序列中最多只能有三种不同的数字:
1、当只有一种数字时,所有数字不变即可,输出YES;
2、当只有两种数字时,K等于这两种数字的差,输出YES;
3、当有三种不同的数字时,判断这三个数是不是等差的,若是则输出YES;
4、其余所有情况都应该输出NO。
代码实现
将最开始的数组进行排序,方便后面统计存储。把序列中的不同的数字存在一个数组里,若数组大小大于3,则一定输出NO;若数组大小小于3,则一定输出YES;若数组大小恰好等于3,且三个数等差,则输出YES。
注意:ai的数据范围高达10^15,所以要用longlong
完整代码
#include <iostream>
#include <algorithm>
using namespace std;
int t, n, cnt;
long long int a[10100];
long long int b[10100];
int main()
{
cin>>t;
while(t--)
{
cin>>n;
for(int i=0;i<10100;i++)
{
a[i] = 0; b[i] = 0;
}
for(int i=0;i<n;i++) cin>>a[i];
sort(a, a+n);
long long int f = a[0];
b[0] = f;
cnt = 1;
for(int i=1;i<n;i++)
{
if(a[i] == f) continue;
else
{
b[cnt] = a[i];
f = a[i];
cnt++;
}
}
if(cnt <= 2 || (cnt == 3 && (b[2]-b[1]) == (b[1]-b[0]) ) ) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}
B - HRZ学英语
题目
样例
样例输入1
ABC??FGHIJK???OPQR?TUVWXY?
样例输出1
ABCDEFGHIJKLMNOPQRSTUVWXYZ
样例输入2
AABCDEFGHIJKLMNOPQRSTUVW??M
样例输出2
-1
数据范围
解题思路
判断字符串中是否存在一个大小为26的子串恰好包含26种字母,做法比较直白,遍历就好了。。。找到一个就停。
如何判断当前子串可以包含26个字母,并且求出字典序最小的字符串?
用一个大小为26的数组标记26个字母,遇到该字母就++,如果发现某个字母重复出现,该子串一定不符合条件。反之,如果除了‘?’出现的字母都各不相同,那一定符合要求,只需求出字典序最小的。
求字典序最小的只需要从前往后遍历标记数组,按顺序将标记为0的字母代替‘?’即可。
另一种思路:用指针指向子串的头和尾,指针移动字母发生变化随之标记,做法差不多。。。
完整代码
#include <iostream>
#include <cstring>
using namespace std;
string s;
int n, judge = 0;
int a[26];
int Find = 0;
int main()
{
cin>>s;
n = s.size();
for(int i=0;i<=(n-26);i++)
{
for(int k=0;k<26;k++) a[k] = 0;
judge = 0;
for(int j=i;j<(i+26);j++)
{
if(s[j]>=65 && s[j]<=90)
{
a[s[j]-65]++;
if(a[s[j]-65] > 1) // 重复
{
judge = 1;
break;
}
}
}
if(judge) continue; //有重复的字符
Find = 1;
int k = 0;
for(int j=i;j<(i+26);j++) //输出
{
if(s[j]!='?') cout<<s[j];
else
{
for(int ii=k;ii<26;ii++)
{
if(a[ii] == 0)
{
cout<<(char)(ii+65);
k = ii+1;
break;
}
}
}
}
if(Find) break;
}
if(!Find) cout<<-1;
return 0;
}
C - 咕咕东的奇妙序列
题目
样例
输入
5
1
3
20
38
56
输出
1
2
5
2
0
数据范围
解题思路
这题观察数据范围。。。前30分是稳的。。。题目描述里甚至给出了56个序列,复制粘贴进数组直接搜30分骗到了耶。
如果不是看错时间后面30分也可以暴力拿到。
然而后面就不会了qwq
数学规律题,一位数,两位数,三位数……数字的位数在一定连续的区间内是相同的,到后面递增1位。所以,首先要确定查找的这个数在哪个范围之内。然后就可以在范围区间内确定该序号的数字具体在哪个数字中,从而进一步找到对应的数字。
要用二分优化二分优化二分优化
pow() 出错也是很无奈了qwq听别人的自己写一个果然好了(叹气)
完整代码
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
long long dig_n[15],p_n[15],w[15],v[15];
long long q,k;
long long f, r, mm, ind;
long long f_num, n_cnt, nn_d;
long long pow_(long long a,long long b)
{
long long ans=1,base=a;
while(b)
{
if(b & 1)
{
ans=ans*base;
}
base=base*base;
b = b >> 1;
}
return ans;
}
void init()
{
dig_n[1] = 9;
p_n[0] = 0;
long long mlt = 1;
for(int i=2;i<10;i++)
{
mlt = mlt * 10;
dig_n[i] = dig_n[i-1] + i*(mlt*9);
}
mlt = 1;
for(int i=1;i<10;i++)
{
f_num = dig_n[i-1] + i;
n_cnt = pow_(10,i) - pow_(10,i-1);
p_n[i] = p_n[i-1] + f_num*n_cnt+(n_cnt-1)*n_cnt*i/2;
mlt*=10;
}
}
int main()
{
init();
cin>>q;
for(int cas=0; cas<q; cas++)
{
cin>>k;
long long dd = 1;
while(true)
{
if(p_n[dd] >= k)
break;
dd++;
}
k = k - p_n[dd-1];
f = pow_(10,dd-1);
r = pow_(10,dd)-1;
mm = 0;
ind = 0;
while(f<=r)
{
mm = (f+r)/2;
f_num = dig_n[dd-1] + dd;
n_cnt = mm - pow_(10,dd-1) + 1;
nn_d = f_num*n_cnt + (n_cnt-1)*n_cnt*dd/2;
if(k<=nn_d)
{
r = mm-1;
ind = mm;
}
else if(k>nn_d)
f = mm + 1;
}
f_num = dig_n[dd-1] + dd;
n_cnt = ind-1-pow_(10,dd-1) + 1;
long long num_to_dec = f_num*n_cnt+(n_cnt-1)*n_cnt*dd/2;
k = k-num_to_dec;
long long pos = 1;
long long nn;
while(true)
{
nn = pow_(10,pos-1)*9*pos;
if(k<=nn)
break;
k = k - nn;
pos++;
}
long long ans = pow_(10,pos-1) + k/pos;
if(k % pos != 0)
{
long long d_c = pos - (k%pos);
while(d_c--)
ans = ans/10;
ans = ans%10;
cout<<ans<<endl;
}
else
{
ans--;
ans = ans % 10;
cout<<ans<<endl;
}
}
return 0;
}
总结
这次的题目海星,最后一题比较麻烦,前面两题还算友好。这次做题数据范围有很大作用www,第一题的longlong,最后一题可以适当骗分orz,其实第二题第一段26个字母也很简单。做题一定要仔细仔细仔细。