机器学习
WangBo_NLPR
中科院自动化所助理研究员,曾任北大计算机研究所助理研究员,从事多媒体(文本/图像/音频/视频)内容理解、多媒体内容安全和多媒体信息检索等领域的研究工作,在图像/视频内容检索,人脸检测/矫正/识别/验证,网络音视频内容安全分析领域有着多年的算法研究经验,并主持了多个国家和企业课题,具有丰富的应用系统研发经验。
展开
-
[机器学习] UFLDL笔记 - ICA(Independent Component Analysis)(Representation)
本文主要记录我在学习ICA(独立成分分析)过程中的心得笔记,对于ICA模型的理解和疑问,也纠正网络上一些Tutorial、资料和博文中的错误,欢迎大家一起讨论。原创 2016-01-06 13:17:39 · 8404 阅读 · 1 评论 -
[科研笔记] 关于人工智能与算法项目的思考
随着人工智能技术的突飞猛进以及实用化水平越来越高,大量的工程项目开始引入人工智能技术并将其作为重要的组成部分。与此同时,大量的泡沫在这个领域产生,给真正做人工智能研究的科研人员和真正需要人工智能技术的企业团队造成不良影响甚至是伤害。本文我结合自身经验给一些出关于人工智能技术发展和算法项目管理方面的思考。欢迎大家批评指正,提出宝贵的意见。原创 2017-08-13 09:46:45 · 5242 阅读 · 2 评论 -
[机器学习] UFLDL笔记 - Autoencoders and Sparsity
本文的理论部分主要整理自UFLDL的“Autoencoders and Sparsity”章节和一些经典教材,同时也参考了网上的一些经典博客,包含了Autoencoders和Sparsity的一些基本概念、应用场景和推导,供读者参考。原创 2017-10-07 10:17:52 · 3004 阅读 · 0 评论 -
[机器学习] UFLDL笔记 - Sparse Coding(稀疏编码)
本文的理论部分主要整理自UFLDL的“Sparse Coding(稀疏编码)”章节和一些经典教材,同时也参考了网上的一些经典博客,包含了Sparse Coding的一些基本概念、优化方法、数学推导和应用场景,供读者参考。原创 2017-10-08 17:01:42 · 14057 阅读 · 3 评论 -
[机器学习] Coursera ML笔记 - 神经网络(Learning) - 标准梯度下降
本文是Neural network - Learning笔记的补充,给出了神经网络的标准梯度下降算法,统一了前向传播、反向传播和梯度计算,欢迎大家讨论,谢谢!原创 2017-10-02 08:35:56 · 673 阅读 · 0 评论 -
[机器学习] Coursera笔记 - 机器学习应用的建议-Part3
本文主要整理自“Advice for Applying Machine Learning”课程的笔记资料,包括假设函数的评估、数据集划分、模型选择问题、过拟合与欠拟合,偏差和方差,数据的重要性,以及机器学习算法的诊断与调试法等方面。原创 2016-11-11 00:30:44 · 2634 阅读 · 2 评论 -
[机器学习] UFLDL笔记 - 反向传播算法(Backpropagation)
本文主要整理自UFLDL的“Backpropagation”章节的笔记,结合笔者的一些心得对内容进行了补充,并纠正了几处错误。反向传播的本质是利用微分的链式法则高效计算梯度,是基于计算图的算法的优化的关键!原创 2017-10-06 15:52:48 · 1551 阅读 · 0 评论 -
[机器学习] UFLDL笔记 - Convolutional Neural Network - 反向传播与梯度计算
本文是我在学习卷积神经网络(Convolutional Neural Network)时的笔记,内容涉及CNN的反向传播、梯度计算等,主要解释了反向传播中Conv层(卷积层)和池化层(Pooling层)之间误差的传递过程和数学表达形式,主要参考资料是Andrew Ng老师在UFLDL Tutorial中的相关章节,本文对其中容易混淆和难以理解的算法细节做一个讲解,希望可以为大家提供一些帮助,也欢迎交流讨论,谢谢!原创 2017-11-10 13:29:43 · 2020 阅读 · 0 评论 -
[机器学习] 实验笔记 - 表情识别(emotion recognition)
本文主要整理自笔者在表情识别(emotion recognition)研究上的实验笔记资料,给出了表情识别常用的数据库,论文资料,识别方法,评价指标,以及笔者的实验笔记和实验结果。与读者分享,欢迎讨论。原创 2017-04-15 13:29:59 · 46103 阅读 · 252 评论 -
[机器学习] UFLDL笔记 - Convolutional Neural Network - 全连接、局部连接、卷积与池化
本文是我在学习卷积神经网络(Convolutional Neural Network)时的笔记,主要参考资料是Andrew Ng老师在UFLDL Tutorial中的相关章节,本文对其中容易混淆和难以理解的算法细节做一个讲解,希望可以为大家提供一些帮助,也欢迎交流讨论,谢谢!原创 2017-10-22 23:28:17 · 3754 阅读 · 1 评论 -
[机器学习] UFLDL笔记 - PCA and Whitening
本文主要整理自UFLDL的“PCA”章节和一些经典教材,同时也参考了网上的一些经典博客,包含了PCA的一些基本概念、推导和代码实现,以及笔者在项目中对PCA的应用经验,供读者参考。原创 2017-04-07 21:25:26 · 7531 阅读 · 0 评论 -
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation
本文主要记录我在学习Supervised Learning过程中的心得笔记,重点介绍了监督学习方向的两个核心问题:Regression(回归)和Classification(分类)。给出了其概念和相关数学定义。原创 2016-03-18 14:20:22 · 7401 阅读 · 4 评论 -
[机器学习] Coursera ML笔记 - 神经网络(Representation)
本文主要记录我在学习神经网络过程中的心得笔记,参考UFLDL Tutorial和Coursera ML,共分为三个部分:Representation:神经网络的模型描述;Learning:神经网络的模型训练;Code:神经网络的代码实现。原创 2016-01-08 10:07:41 · 18542 阅读 · 4 评论 -
[机器学习] Coursera ML笔记 - 神经网络(Learning)
本文主要记录我在学习神经网络模型训练(参数学习)时的笔记,参考UFLDL Tutorial和Coursera ML,笔记中重点讨论了神经网络的代价函数模型和参数学习中的Backpropagation算法,希望可以为大家提供一些帮助,也欢迎交流讨论,谢谢!原创 2016-01-12 21:05:04 · 9780 阅读 · 0 评论 -
[机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
本文介绍机器学习中重要的概念:梯度和梯度下降法,这是我们在学习MachineLearning算法时的核心概念之一,其实也就是我们在大学本科高等数学中的基础概念。原创 2016-03-25 13:34:35 · 115395 阅读 · 50 评论 -
[机器学习] Coursera ML笔记 - 机器学习基础概念
本文主要介绍机器学习/模式识别领域的一些术语、定义以及相关基础概念。在后续不断的工作学习中,博主还会整理一些比较重要的术语、概念更新到这里。原创 2016-03-15 17:35:23 · 2805 阅读 · 0 评论 -
[机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)
本文主要记录我在学习逻辑回归时的心得笔记,从假设函数、代价函数、优化方法等方面介绍了逻辑回归。原创 2016-04-09 21:06:36 · 21171 阅读 · 1 评论 -
[机器学习] UFLDL笔记 - ICA(Independent Component Analysis)(Code)
本文主要介绍ICA的训练过程、代码以及实验结果(对应UFLDL的课后练习),源自于我在学习ICA过程中的笔记资料,包括了我个人对ICA模型的理解、代码实现和实验结果,欢迎大家一起讨论。原创 2016-01-07 09:31:58 · 3120 阅读 · 1 评论 -
[机器学习] Coursera笔记 - 机器学习应用的建议-Part2
本文主要记录我在学习Standford Andrew Ng老师的“Advice for Applying Machine Learning”课程时的笔记,包括假设函数的评估指标、数据集划分、模型选择问题、过拟合与欠拟合,偏差和方差,数据的重要性,以及机器学习算法的诊断与调试法等方面。原创 2016-11-05 18:47:10 · 2284 阅读 · 0 评论 -
[机器学习] Coursera笔记 - 机器学习应用的建议-Part1
本文主要整理自“Advice for Applying Machine Learning”课程的笔记资料,包括假设函数的评估、数据集划分、模型选择问题、过拟合与欠拟合,偏差和方差,数据的重要性,以及机器学习算法的诊断与调试法等方面。原创 2016-10-29 15:02:33 · 3722 阅读 · 0 评论 -
[机器学习] Coursera笔记 - Support Vector Machines
本文主要整理自“Support Vector Machines (SVMs)”课程的笔记资料和一些经典教材,同时也参考了网上经典的关于SVM的博客,包含了SVM的一些基本概念和推导,供读者参考。原创 2016-12-09 18:03:59 · 6044 阅读 · 2 评论 -
[机器学习] UFLDL笔记 - Convolutional Neural Network - 矩阵运算
卷积神经网络的核心操作就是各种矩阵运算,在前向传播和反向传播中的各种形式的矩阵运算构成了CNN的计算体系,本文对CNN中的各种矩阵运算进行一个总结,希望可以帮助大家理解卷积神经网络(CNN)提供一些帮助,也欢迎交流讨论,谢谢!原创 2017-11-05 22:58:12 · 2143 阅读 · 0 评论