百度三面原创算法,求资源分配最有效的组合(回溯)

题目

现有资源总量为p,一个数组表示每个任务所需要的资源量。
请输出在优先保证资源分配的最多的情况下任务量最大。

例子:
p=20
arr=[2,8,3,1,9]
输出:
2 8 1 9
解释:2+8+1+9=20,资源可以全部分配

例子:
p=28
arr=[2,8,3,1,4,9]
输出
2,8,3,1,4,9
解释:没有相加可以等于28的组合, 最接近的是所有的和=27

思路

思路就是利用回溯法找所有相加组合中最接近p的组合,如果能等于p那么就取数量最多的那个组合

如果有更有效的思路欢迎指正

代码


import java.util.*;

public class Main {
    //资源总量
    static int p = 28;
    //查询过程中的小于总量的最大值
    static int maxVal = 0;
    //与最大值对应的list
    static List<Integer> resultList = new ArrayList<>();
    public static void main(String[] args) {
        int[] arr = new int[]{2,8,3,1,4,9};
        method(arr,0,0,new ArrayList<Integer>());
        System.out.println(resultList);
    }
    //arr代表数组,i是索引位置,val,list查询过程中累加的值和对应的list
    private static void method(int[] arr, int i, int val, ArrayList<Integer> list) {
        //分为大于p和等于p
        if (val > p){
            val -= arr[i-1];
            ArrayList<Integer> integers = new ArrayList<>(list);
            integers.remove(integers.size()-1);
            if (val > maxVal){
                maxVal = val;
                resultList = integers;
            }else if (val == maxVal && integers.size() > resultList.size()){
                resultList = integers;
            }
            return;
        }
        if (val == p){
            if (val > maxVal){
                maxVal = val;
                resultList = new ArrayList<>(list);
            }
            if (list.size() > resultList.size()){
                resultList = new ArrayList<>(list);
            }
            return;
        }
        //如果遍历到最后仍然小于p,把结果加上去
        if (i==arr.length && resultList.size() == 0){
            maxVal = val;
            resultList = new ArrayList<>(list);
        }
        for (int j = i; j < arr.length; j++) {
            val += arr[j];
            list.add(arr[j]);
            method(arr,j+1,val,list);
            val -= arr[j];
            list.remove(list.size()-1);
        }
    }
}


变形

这次我们优先取数量最多的组合里面资源分配最有效的组合。
优先数量,其次是分配效率。

实验课程:算法分析与设计 实验名称:用动态规划法求解资源分配问题 (验证型实验) 实验目标: (1)掌握用动态规划方法求解实际问题的基本思路。 (2)进一步理解动态规划方法的实质,巩固设计动态规划算法的基本步骤。 实验任务: (1)设计动态规划算法求解资源分配问题,给出算法的非形式描述。 (2) 在Windows环境下用C 语言实现该算法。计算10个实例,每个实例中n=30, m=10, Ci j为随机产生于范围(0,103)内的整数。记录各实例的数据及执行结果(即最优分配方案、最优分配方案的值)、运行时间。 (3)从理论上分析算法的时间和空间复杂度,并由此解释相应的实验结果。 实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1) 根据实验目标,明确实验的具体任务; (2) 分析资源分配问题,获得计算其最优值的递推计算公式; (3) 设计求解问题的动态规划算法,并编写程序实现算法; (4) 设计实验数据并运行程序、记录运行的结果; (5) 分析算法的时间和空间复杂度,并由此解释释相应的实验结果; 问题分析: 问题描述: 某厂根据计划安排,拟将n台相同的设备分配给m个车间,各车间获得这种设备后,可以为国家提供盈利Ci j(i台设备提供给j号车间将得到的利润,1≤i≤n,1≤j≤m) 。问如何分配,才使国家得到最大的盈利? 算法基本思想: 本问题是一简单资源分配问题,由于具有明显的最优子结构,故可以使用动态规划求解,用状态量f[i][j]表示用i台设备分配给前j个车间的最大获利,那么显然有f[i][j] = max{ f[k][j–1] + c[i-k][j] },0<=k<=i。再用p[i][j]表示获得最优解时第j号车间使用的设备数为i-p[i][j],于是从结果倒推往回即可得到分配方案。程序实现时使用顺推,先枚举车间数,再枚举设备数,再枚举状态转移时用到的设备数,简单3重for循环语句即可完成。时间复杂度为O(n^2*m),空间复杂度为O(n*m),倘若此题只需最大获利而不必方案,则状态量可以减少一维,空间复杂度优化为O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值