常用排序算法

一、冒泡排序

平均时间复杂度: O(n^2)

思想:

  • 1、将第一个数与后面的所有数进行比较,如果后面的数比第一个大(或者小),则将这两个数的位置进行交换,这样就找出了最小(或者最大)的数,并将其放在数组中的第一个位置;
  • 2、将第二个数与后面的所有数进行比较,与第一步相同,找出第二小(或者第二大)的数,并放在数组中第二个位置;
  • 3、依次循环,直到将倒数第二个数与倒数第一个数进行比较。

代码实现:

void BubbleSort(int arr[], int length)
{
	for(int i = 0; i < length - 1; i++)
	{
		for(int j = 0; j < length - i - 1; j++)
		{
			if(arr[j + 1] < arr[j]) //如果前面的数小于后面的数,则交换两个数的位置,即找出最大的那个数,将其放在数据的第一个位置
			{
				swap(arr[j + 1], arr[j]);
			}
		}
	}
}

二、选择排序

平均时间复杂度: O(n^2)

思路:

  • 1、将第一个数假定为最小的值 ,并记录下标为min/max
  • 2、跟后面的数与arr[min/max]进行比较,如果后面的数有比其小/大,更新min/max
  • 3、依次循环,一共循环n - 1 次

代码实现:

void SelectSort(int arr[], int length)
{
	for(int i = 0; i < length - 1; i++)
	{
		int min = i;
		for(int j = i + 1; j < length; j++)
		{
			if(arr[j] < arr[min])
			{
				min = j;
			}
		}
		if(min != i)
		{
			swap(arr[i], arr[min]);
		}
	}
}

三、插入排序

时间复杂度: O(n^2)

思路:

  • 1、元素被分为有序区和无序区两部分。最初有序区只有一个元素。每次从无序区中选择一个元素,插入到有序区的位置,直到无序区变空

代码示例:

void InsertSort(int arr[], int length)
{
	for(int i = 1; i < length; i++)
	{
		if(arr[i] < arr[i - 1])
		{
			int temp = arr[i];
			int j;
			for(j = i - 1; j >=0 && arr[j] > temp; j--)
			{
				arr[j + 1] = arr[j];
			}
			arr[j + 1] = temp;
		}
	}
}

四、快速排序

时间复杂度: O(nlogn)

思路:

  • 分治法 + 挖坑填数
  • 使用递归的方式

代码示例:

void QuickSort(int arr[], int start, int end)
{
	int i = start;//快速排序起始位置
	int j = end; //快速排序终止位置
	int temp = arr[start]; //基准数
	if(i < j)
	{
		while(i < j)
		{
			//找右半边比基准数小的
			while(i < j && arr[j] > temp)
			{
				j--;
			}
			//填数
			if(i < j)
			{
				arr[i] = arr[j];
				i++;
			}
			//找左半边比基准数大的
			while(i < j && arr[i] < temp)
			{
				i++;
			}
			//填数
			if(i < j)
			{
				arr[j] = arr[i];
				j--;
			}
		}
		//把基准数填入相应的坑当中
		arr[i] = temp;
		//将左半边进行快速排序
		QuickSort(arr, start, i - 1);
		//将右半边进行快速排序
		QuickSort(arr, i + 1, end);
	}
}

五、归并排序

时间复杂度: O(nlogn)

思路:

  • 将两个有序的序列合并成一个有序序列, 使用递归的方式
  • 1、将原数据进行分组,直至分成一个元素
  • 2、将分组好的数据进行合并
  • 3、需要辅助空间

代码示例:

//合并两个有序序列
void Merge(int arr[], int start, int end, int mid, int temp[])
{
	int i_start = start;
	int i_end = mid;
	int j_start = mid + 1;
	int j_end = end;
	//合并两个有序序列
	int length = 0;
	while(i_start <= i_end && j_start <= j_end)
	{
		if(arr[i_start] < arr[j_start])
		{
			temp[length++] = arr[i_start++];
		}
		else
		{
			temp[length++] = arr[j_start++];
		}
	}
	//如果有其中的一个序列不为空,则将这个序列剩下的元素放到辅助空间中去
	while(i_start <= i_end)
	{
		temp[length++] = arr[i_start++];
	}
	while(j_start <= j_end)
	{
		temp[length++] = arr[j_start++];
	}
	//将辅助空间中的数据复制到原空间中
	for(int i = 0; i < length; i++)
	{
		arr[i + start] = temp[i];
	}
}

//归并排序
void MergeSort(int arr[], int start, int end, int temp[]) //temp是辅助空间,大小与原数组大小相同
{
	if(start >= end)
	{
		return;
	}
	//分组
	int mid= (start + end) / 2;
	//将左半边的数据进行分组
	MergeSort(arr, start, mid, temp);
	//将右半边的数据进行分组
	MergeSort(arr, mid + 1, end, temp);
	//合并
	Merge(arr, start, end, mid, temp);
}

六、希尔排序

时间复杂度: O(nlogn)~O(n^2)

思路:

代码实现:

void ShellSort()
{

}

七、堆排序

时间复杂度: O(nlogn)

完全二叉树:

  • 对任意节点 i (非叶子节点)
    左孩子节点编号:2 * i + 1
    右孩子节点编号:2 * i + 2
  • 对任意节点j(非根节点)
    其父亲节点编号:(j - 1) / 2

大顶堆: 父节点的值大于左右孩子节点的值的完全二叉树
小顶堆: 父节点的值小于左右孩子节点的值的完全二叉树

思路:

  • 1、将数组初始化成大顶堆、小顶堆的形式
  • 2、将数组最后一个元素与堆顶元素交换,然后再将其调整成大顶堆/小顶堆的形式
  • 3、循环第二步,直到调整到最后一个元素

代码示例:

//调整堆(大顶堆)
void HeapAdjust(int arr[], int index, int length)
{
	int max = index;
	int lchild = 2 * index + 1;
	int rchild = 2 * index + 2;
	//将左孩子、右孩子与当前节点的值相比较,然后把最大的那个作为父亲节点
	if(lchild < length && arr[lchild] > arr[max])
	{
		max = lchild;
	}
	if(rchild < length && arr[rchild] > arr[max])
	{
		max = rchild;
	}
	if(max != index)
	{
		swap(arr[max], arr[index]);
		HeapAdjust(arr, max, length);
	}
}

//堆排序
void HeapSort(int arr[], int length)
{
	//初始化堆
	for(int i = length / 2 - 1; i >= 0; i--) //因为数组下标是从0开始的,所以i应该从length / 2 - 1 开始
	{
		HeapAdjust(arr, i, length);
	}
	//将堆顶元素与最后一个元素交换,再重新调整堆
	for(int i = length - 1; i >= 0; i--)
	{
		swap(arr[0], arr[i]);
		HeapAdjust(arr, 0, i);
	}
}

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值