前言
我们在平时学习和工作中经常用到各种排序算法,不仅要考虑算法的时间空间复杂度也要注意稳定性问题。为更好的理解排序算法,在此整理出常见的排序算法,包括:选择排序、冒泡排序、插入排序、快速排序、归并排序、堆排序、希尔排序、桶排序、计数排序、基数排序。
一、各种排序算法比较
复杂度和稳定性的比较(来自维基百科)
这里给大家介绍马老师的口诀记忆法:
《忆排序》
选泡插,快归堆希桶计基
恩方恩老恩一三
对恩加K恩乘K
不稳稳稳不稳稳
不稳不稳稳稳稳
二、具体排序算法介绍
2.1 冒泡排序
主要思想:冒泡排序的名字很形象,像水中的气泡一样,气泡大的会向上浮出水面,依次对两个数比较大小,大的数冒出来,小的数压下去。
优点:稳定
缺点:效率慢,每次只能移动相邻的俩个数据
冒泡排序的时间复杂度为O(n*n),空间复杂度为O(1),在数据有序的时候时间复杂度可以达到O(n)。适用的情景为数据量量不大,对稳定性有要求,且数据基本有序的情况下。
代码如下(示例):
void bubble_sort (int a[], int n) {
int i, j, lastSwap, tmp;
for (j=n-1; j>0; j=lastSwap) {
lastSwap=0;
for (i=0; i<j; i++) {
if (a[i] > a[i+1]) {
tmp=a[i];
a[i]=a[i+1];
a[i+1]=tmp;
//最后一次交换位置的坐标
lastSwap = i;
}
}
}
}
2.2 选择排序
主要思想:
(1)从待排序序列中,找到关键字最小的元素,如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换。
(2)从余下的 N - 1 个元素中,找出关键字最小的元素。
重复(1)、(2)步,直到排序结束。
特点:比冒泡更快一些,但代价是跳跃性交换,排序不稳定。
选择排序的时间复杂度为O(n*n),空间复杂度为O(1),由于每次选出待排序数据中的最小值(增序)或最大值(降序)插入到当前的有序队列中,相对于冒泡排序减少了交换的次数。当数据量不大,且对稳定性没有要求的时候,适用于选择排序
代码如下(示例):
void selection_sort (int a[], int n) {
int i,j,pos,tmp;
for (i=0; i<n-1; i++) { //寻找最小值的下标
for (pos=i, j=i+1; j<n; j++)
if (a[pos]>a[j])
pos=j;
if (pos != i) {
tmp=a[i];
a[i]=a[pos];
a[pos]=tmp;
}
}
}
2.3 插入排序
主要思想:过程跟拿牌一样,依次拿N张牌,每次拿到到牌后,从后往前看,遇到合适位置就插进去。最终手上的牌从小到大。把N个待排的数据看作一个无序表和一个有序表,开始的时候有序表中只有一个元素,无序表中有N-1个元素,之后依次从无序表中取出元素插入到有序表中的适当位置,使之形成新的有序表。
特点:当数据规模较小或者数据基本有序时,效率较高。
插入排序的时间复杂度为O(n*n),空间复杂度为O(1),最好的情况下即当数据有序时可以达到O(n)的时间复杂度。适用于数据量不大,对算法的稳定性有要求,且数据局部或者整体有序的情况。
代码如下(示例):
void insertion_sort (int a[], int n) {
int i,j,v;
for (i=1; i<n; i++) { //如果第i个元素小于第j个,则第j个向后移动
for (v=a[i], j=i-1; j>=0&&v<a[j]; j--)
a[j+1]=a[j];
a[j+1]=v;
}
}
2.4 快速排序
主要思想:采用分治思想,通常选取第一个数作为基准元素(pivot