统计学
文章平均质量分 67
统计学基础
walking_visitor
想起什么写什么
展开
-
一元线性回归的前因后果
一元线性回归,初次看的这个名词的人,可能会联想到一元一次方程,没错一元线性回归就是一元一次方程,一元一次方程在我们学习的方程组里估计是最简单的一种了,然而就是这最简单的一元线性回归确构成了复杂统计分析的理论基础,真可谓大道至简...原创 2021-07-08 15:32:51 · 360 阅读 · 0 评论 -
白话假设检验
所需基础知识高斯分布、中心极限定理、参数估计什么是假设检验假设检验,从名称上来看有假设、检验两个关键字。顾名思义就是提出一个假设,然后来检验这个假设是否正确。我们知道参数估计是用抽样样本,来估计总体样本的特征,假设检验呢,就是对样本特征提出一个假设,然后来检验这个假设是否正确,怎么检验呢,自然肯定是利用正太分布之类的统计理论了。本质上来说,假设检验就是根据构造的统计量所符合的统计学理论分布,采用小概率理论来推断假设是否正确,如果原假设发生的概率较大则接受原假设,如果原假设发生的概率为小概原创 2021-07-05 13:55:54 · 400 阅读 · 0 评论 -
参数估计统计量总结
一个总体的参数的检验一般性问题有:总体均值的置信区间估计 总体比例的置信区间估计 总体方差的置信区间估计一个总体的参数检验需要考虑的因素有总体分布是否为正太分布、总体方差是否已知、抽样样本量是大还是小。总结如下:总体均值的置信区间估计总体分布 样本量 总体标准差已知 总体标准差未知 正态分布 大于30(大样本) 小于30(小样本) 非正态分布 大于30(大样本) 原创 2021-07-04 16:06:03 · 1690 阅读 · 0 评论 -
白话方差分析
什么是方差分析?我们直接看书里面的例子:现在要解决的问题是:不同行业是否对投诉数量有影响单从这个问题从发,要判断行业对投诉数量的影响,那么就分析一下不同行业的投诉数量情况,我们拿书中给出的散点图来看:图中的连线是同一行业中的投诉均值,从这个图上我们可以直观的看到行业对投诉数量是有影响的,因为明显不同行业的均值不同,在抽样的情况下,均值可以很大程度的反应真实情况,其实问题到这里已经有结论了。但是是否有个指标来直接说明这个事情呢?这个指标又改如何计算呢?这就是方差分析要做的事情。基于原创 2021-05-06 16:49:06 · 7180 阅读 · 2 评论 -
白话参数估计
参数估计的基础知识储备什么是参数估计?参数估计有哪些类型?参数估计有哪些方法?参数估计的基础知识储备正太分布(必须)、中心极限定理(非必须)什么是参数估计?参数估计是用抽取部分样本的特征,来推断样本总体的特征,举个例子,比如全国人口平均身高,这是个不可能以全体样本来统计的指标,那么就采用抽样的方式,以抽取样本内的平均身高来推断全国的平均身高,为什么说推断,而不是等于呢?假设我们抽样了多个批次,那么每个批次计算出来的平均身高大体是不会相同的,我们可以知道的是:每个批次所计算原创 2021-04-21 18:09:10 · 957 阅读 · 1 评论 -
数据集中趋势度量:众数、平均数、中位数、几何平均数
即一组数据距离数据中心的靠近程度原创 2021-02-26 18:43:06 · 12643 阅读 · 0 评论 -
数据抽样方式:概率抽样、非概率抽样
数据抽样方式可分为概率抽样和非概率抽样,抽样的目的是减少数据量,以小群体样本来进行分析,得出针对全体或某一类的适用结论。抽样样本的好坏需要依据研究的具体问题而定,不同的研究问题,对抽样样本的要求会有所差异,样本的抽样方式也有所不同。概率抽样定义:采用随机的方式,在所有样本中,每个样本都有可能被采样到。这里注意随机与随便的区别,随机是没有主观意识存在的,每个样本都有一定概率被抽中,而随便抽样,则带有人为的主观意识,受人为思想、喜好的影响。适用场景:以小样本抽样来估计整体样本的特征特点:专业原创 2021-02-04 13:55:07 · 13550 阅读 · 1 评论 -
数据的离散程度度量:极差、四分位差、平均差、方差、标准差、异众比率、离散系数
数据的离散程度即衡量一组数据的分散程度如何,其衡量的标准和方式有很多,而具体选择哪一种方式则需要依据实际的数据要求进行抉择。首先针对不同的衡量方式的应用场景大体归纳如下:极差:极差为数据样本中的最大值与最小值的差值,是所有方式中最为简单的一种,它反应了数据样本的数值范围,是最基本的衡量数据离散程度的方式,受极值影响较大。如在数学考试中,一个班学生得分的极差为60,放映了学习最好的学生与学习...原创 2018-10-29 15:36:33 · 103815 阅读 · 4 评论