目录
一个总体的参数的检验
一般性问题有:
- 总体均值的置信区间估计
- 总体比例的置信区间估计
- 总体方差的置信区间估计
一个总体的参数检验需要考虑的因素有总体分布是否为正太分布、总体方差是否已知、抽样样本量是大还是小。
总结如下:
总体均值的置信区间估计
总体分布 | 样本量 | 总体标准差已知 | 总体标准差未知 |
---|---|---|---|
正态分布 | 大于30(大样本) | ||
小于30(小样本) | | ||
非正态分布 | 大于30(大样本) |
总体比例的置信区间估计
总体比例只考虑大样本情况下的估计
总体方差的置信区间估计
总体方差只考虑正态总体方差的估计
两个总体的参数检验
一般性问题有:
- 两个总体的均值之差
- 两个总体的比例之差
- 两个总体的方差比
两个总体的均值之差
- 两个总体均为大样本情况下
其均值之差的抽样分布,服务期望为(),方差为(
)的正太分布,
其均值之差的置信区间估计为:
当两个总体的样本方差未知时,可以用样本的方差来代替。
- 两个总体为小样本情况下
需要作出一些假定:
两个总体都服从正太分布
两个随机样本都抽取自独立的两个个体
在符合以上假定前提下,两个样本的均值之差都服从正太分布。
当总体方差已知时,其置信区间同大样本情况一样
当总体方差未知时,但相等时,需要用到样本方差来进行估计,这时,需要将两个样本的数据组合在一起,即总体方差估计量:
这时,均值之差的分布符合,自由度为(n1+n2-2)的t分布,其置信区间表达式为:
当总体方差未知,且不相等时,两个样本均值之差符合自由度为v的t分布:
其置信区间为:
两个总体的比例之差的区间估计
当两个总体的比例()未知时,可用样本比例代替,其比例之差的置信区间为:
两个总体方差比的区间估计
两个总体方差比服从F(n1-1,n2-2)分布,其方差比的置信区间为: