参数估计统计量总结

目录

一个总体的参数的检验

总体均值的置信区间估计

总体比例的置信区间估计

总体方差的置信区间估计

两个总体的参数检验

两个总体的均值之差

两个总体的比例之差的区间估计

两个总体方差比的区间估计


一个总体的参数的检验

一般性问题有:

  1. 总体均值的置信区间估计
  2. 总体比例的置信区间估计
  3. 总体方差的置信区间估计

一个总体的参数检验需要考虑的因素有总体分布是否为正太分布、总体方差是否已知、抽样样本量是大还是小。

总结如下:

总体均值的置信区间估计

总体分布样本量总体标准差已知总体标准差未知
正态分布大于30(大样本)\bar{x}\pm z_{a/2}*\frac{\alpha}{\sqrt{n}}\bar{x}\pm z_{a/2}*\frac{s}{\sqrt{n}}
小于30(小样本)\bar{x}\pm z_{a/2}*\frac{\alpha}{\sqrt{n}}​​​​​​​​​​​​​​\bar{x}\pm t_{a/2}*\frac{\alpha}{\sqrt{n}}
非正态分布大于30(大样本)\bar{x}\pm z_{a/2}*\frac{\alpha}{\sqrt{n}}​​​​​​​\bar{x}\pm z_{a/2}*\frac{s}{\sqrt{n}}​​​​​​​

总体比例的置信区间估计

总体比例只考虑大样本情况下的估计

p\pm z_{a/2}\sqrt{\frac{p(1-p)}{n}}

总体方差的置信区间估计

总体方差只考虑正态总体方差的估计

\frac{(n-1)s^{2}}{x_{a/2}^{2}}\leqslant\alpha ^{2}\leqslant \frac{(n-1)s^{2}}{x_{1-a/2}^{2}}

两个总体的参数检验

一般性问题有:

  1. 两个总体的均值之差
  2. 两个总体的比例之差
  3. 两个总体的方差比

两个总体的均值之差

  • 两个总体均为大样本情况下

其均值之差的抽样分布,服务期望为(\mu _{1}-\mu _{2}),方差为(\frac{\alpha _{1}^2{}}{n1}+\frac{\alpha _{2}^2{}}{n2})的正太分布,

其均值之差的置信区间估计为:

(\bar{x1}-\bar{x2})\pm z_{a/2}\sqrt{\frac{\alpha _{1}^2{}}{n1}+\frac{\alpha _{2}^2{}}{n2}}

当两个总体的样本方差未知时,可以用样本的方差来代替。

  • 两个总体为小样本情况下

需要作出一些假定:

两个总体都服从正太分布

两个随机样本都抽取自独立的两个个体

在符合以上假定前提下,两个样本的均值之差都服从正太分布。

当总体方差已知时,其置信区间同大样本情况一样

当总体方差未知时,但相等时,需要用到样本方差来进行估计,这时,需要将两个样本的数据组合在一起,即总体方差估计量s_{p}^{2}

这时,均值之差的分布符合,自由度为(n1+n2-2)的t分布,其置信区间表达式为:

当总体方差未知,且不相等时,两个样本均值之差符合自由度为v的t分布:

其置信区间为:

两个总体的比例之差的区间估计

当两个总体的比例(\pi _{1},\pi _{2})未知时,可用样本比例代替,其比例之差的置信区间为:

两个总体方差比的区间估计

两个总体方差比服从F(n1-1,n2-2)分布,其方差比的置信区间为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值