常见排序与搜索算法的深度剖析——从基础到应用

目录

一、排序算法

1. 冒泡排序

2. 选择排序

3. 快速排序

二、搜索算法

1. 二分查找

2. 深度优先搜索(DFS)

3. 广度优先搜索(BFS)


在编程和算法领域,排序和搜索是最常见的两类基本操作。排序可以将数据按照特定顺序排列,以便提高检索效率;而搜索则是在数据中找到目标值的过程。冒泡排序快速排序选择排序是三种常用的排序方法,各有特点。搜索方面,二分查找适用于有序数据,而深度优先搜索(DFS)和广度优先搜索(BFS)则广泛应用于图论和树结构的遍历。本文将从理论和代码实现的角度,剖析这些基础算法的原理、优缺点及其应用场景。

一、排序算法

1. 冒泡排序

原理:通过多次比较相邻元素,将最大的元素“冒泡”到数组的最后位置。
实现:双层循环,一层控制遍历次数,另一层进行相邻元素的比较与交换。

比喻
冒泡排序就像在水池里吹气泡,重的东西(大的数)会慢慢沉下去,轻的东西(小的数)会逐渐上浮。每次比较相邻的两个元素,把大的往后移,最终最大的一个会被送到“池底”(数组末尾)。

场景
想象你在整理扑克牌,每次从头开始比较相邻的两张,发现顺序不对就交换,直到最重的牌(最大值)沉到最右边。

特点

时间复杂度:O(n²)

优点:实现简单,适合小规模数据。

缺点:效率较低,不适合大规模数据。

代码实现(C++):

#include <stdio.h>

// 冒泡排序函数
// arr: 待排序的数组
// n: 数组中元素的数量
void bubbleSort(int arr[], int n) {
    // 外层循环控制排序的总轮数,每一轮都会将最大的元素“冒泡”到正确的位置
    for (int i = 0; i < n - 1; i++) {
        // 内层循环控制每一轮的比较次数,每比较一次可能会发生一次交换
        for (int j = 0; j < n - i - 1; j++) {
            // 如果当前元素大于下一个元素,说明顺序错误,需要交换
            if (arr[j] > arr[j + 1]) {
                // 交换arr[j]和arr[j + 1]
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}

// 主函数
int main() {
    // 初始化一个整型数组
    int arr[] = {64, 34, 25, 12, 22, 11, 90};
    // 计算数组中元素的数量
    int n = sizeof(arr) / sizeof(arr[0]);
    // 调用冒泡排序函数对数组进行排序
    bubbleSort(arr, n);

    // 打印排序后的数组
    printf("Sorted array: ");
    for (int i = 0; i < n; i++) {
        // 打印当前元素
        printf("%d ", arr[i]);
    }
    // 换行
    printf("\n");
    return 0;
}

2. 选择排序

原理:每次从未排序的部分选择最小的元素,放到已排序部分的末尾。

比喻
选择排序就像选班级里最高的同学站到队伍最右边(最大值),接着在剩下的人里找次高的站到倒数第二位,以此类推,直到队伍排好。

场景
比如你从一堆硬币中挑最重的硬币放在第一堆,再从剩下的硬币中挑次重的,放在第二堆,依此类推。

特点

时间复杂度:O(n²)

优点:内存移动次数少,适合内存写入较高代价的场景。

缺点:效率低,不适合大规模数据。

代码实现(C):

#include <stdio.h>

// 选择排序函数定义
void selectionSort(int arr[], int n) {
    // 外层循环控制排序的轮数
    for (int i = 0; i < n - 1; i++) {
        // 假设当前轮中最小的元素的索引为i
        int minIdx = i;
        // 内层循环用于找出比当前假设的最小值还要小的元素
        for (int j = i + 1; j < n; j++) {
            // 如果找到更小的元素,更新最小元素的索引
            if (arr[j] < arr[minIdx]) {
                minIdx = j;
            }
        }
        // 如果最小元素不是当前轮的起始元素,则交换它们
        int temp = arr[i];
        arr[i] = arr[minIdx];
        arr[minIdx] = temp;
    }
}

// 主函数
int main() {
    // 初始化一个整型数组
    int arr[] = {29, 10, 14, 37, 13};
    // 计算数组中元素的数量
    int n = sizeof(arr) / sizeof(arr[0]);
    // 调用选择排序函数对数组进行排序
    selectionSort(arr, n);

    // 打印排序后的数组
    printf("Sorted array: ");
    for (int i = 0; i < n; i++) {
        // 打印当前元素
        printf("%d ", arr[i]);
    }
    // 换行
    printf("\n");
    return 0;
}

3.快速排序

原理:通过选择一个基准值(pivot),将数组分为比基准值小的部分和大的部分,递归地进行排序。

比喻
快速排序就像在搬家时整理物品:你先挑一个盒子(基准值),把所有轻的东西(比基准值小的)放左边,重的东西(比基准值大的)放右边,然后再分别对左边和右边重复这个动作,直到每个小区域的东西都整理好了。

场景
比如整理书架,先随便选一本书(基准),把比它小的书放到左边,比它大的书放到右边,再对左右两部分重复整理。

特点

时间复杂度:平均为 O(n log n),最差为 O(n²)。

优点:效率高,适合大规模数据。

缺点:递归调用会占用栈空间。

代码实现(C):

#include <stdio.h>

// 快速排序函数声明
void quickSort(int arr[], int low, int high);
// 分区函数声明
int partition(int arr[], int low, int high);

// 快速排序函数定义
void quickSort(int arr[], int low, int high) {
    // 如果low小于high,说明还有元素未排序
    if (low < high) {
        // 进行分区操作,返回基准元素的索引
        int pi = partition(arr, low, high);
        // 对基准左边的子数组进行快速排序
        quickSort(arr, low, pi - 1);
        // 对基准右边的子数组进行快速排序
        quickSort(arr, pi + 1, high);
    }
}

// 分区函数定义
int partition(int arr[], int low, int high) {
    // 选择最后一个元素作为基准
    int pivot = arr[high];
    // i初始化为low-1,用于在循环中跟踪比基准小的元素的最后一个位置
    int i = low - 1;
    // 循环遍历数组,直到high-1的位置
    for (int j = low; j < high; j++) {
        // 如果当前元素小于基准
        if (arr[j] < pivot) {
            // i加1,交换arr[i]和arr[j]
            i++;
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }
    // 交换基准和arr[i+1],确保基准左边的元素都比它小,右边的元素都比它大
    int temp = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = temp;
    // 返回基准的索引
    return i + 1;
}

// 主函数
int main() {
    // 初始化一个整型数组
    int arr[] = {10, 7, 8, 9, 1, 5};
    // 计算数组中元素的数量
    int n = sizeof(arr) / sizeof(arr[0]);
    // 对整个数组进行快速排序
    quickSort(arr, 0, n - 1);

    // 打印排序后的数组
    printf("Sorted array: ");
    for (int i = 0; i < n; i++) {
        // 打印当前元素
        printf("%d ", arr[i]);
    }
    // 换行
    printf("\n");
    return 0;
}

二、搜索算法

1. 二分查找

原理:在有序数组中,通过比较目标值与中间值,不断缩小搜索范围。

比喻
二分搜索就像在字典里查一个单词。你不会从第一页开始一页一页地翻,而是打开大概中间的页面,看看目标单词是在前面还是后面,然后继续翻开前半部分或后半部分,再次对半查找。

场景
想象一个100层的楼房,你要找一个人住在哪一层。你从中间50层开始问管理员,然后根据回答往上或往下继续找,直到找到目标楼层。

特点

时间复杂度:O(log n)

优点:效率高,适合有序数组。

缺点:仅适用于有序数据。

代码实现(C):

#include <stdio.h>

// 二分查找函数定义
// arr: 待查找的有序数组
// n: 数组中元素的数量
// target: 要查找的目标值
int binarySearch(int arr[], int n, int target) {
    // 初始化搜索范围的上下界
    int low = 0, high = n - 1;
    // 当搜索范围的上下界有重叠时,继续查找
    while (low <= high) {
        // 计算中间位置的索引
        int mid = low + (high - low) / 2;
        // 如果中间元素等于目标值,返回中间位置的索引
        if (arr[mid] == target) {
            return mid;
        // 如果中间元素小于目标值,说明目标值在中间元素的右侧
        } else if (arr[mid] < target) {
            low = mid + 1;
        // 如果中间元素大于目标值,说明目标值在中间元素的左侧
        } else {
            high = mid - 1;
        }
    }
    // 如果未找到目标值,返回-1
    return -1;
}

// 主函数
int main() {
    // 初始化一个有序整型数组
    int arr[] = {2, 3, 4, 10, 40};
    // 计算数组中元素的数量
    int n = sizeof(arr) / sizeof(arr[0]);
    // 设置要查找的目标值
    int target = 10;
    // 调用二分查找函数
    int result = binarySearch(arr, n, target);

    // 根据返回的结果判断目标值是否存在于数组中
    if (result != -1) {
        // 如果存在,打印目标值的位置
        printf("Element is present at index %d\n", result);
    } else {
        // 如果不存在,打印目标值不在数组中的消息
        printf("Element is not present in array\n");
    }
    return 0;
}

2. 深度优先搜索(DFS)

原理:优先深入树或图的一个分支,直到无法继续,再回溯到上一层。

比喻
深度优先搜索就像走迷宫:你沿着一条路径一直走到底,直到无路可走再返回上一个分叉点,换另一条路继续走,直到找到出口。

场景
你在超市找某个商品,你可能先从一个货架的最底层开始找,然后从底到顶找完这个货架,再移动到下一个货架。

特点

时间复杂度:O(V+E),V 为顶点数,E 为边数。

优点:适合解决路径相关问题,如迷宫问题。

缺点:可能陷入无限递归(需配合标记)。

代码实现(C):

#include <stdio.h>
#include <stdbool.h>

#define MAX 100  // 定义图的最大顶点数

// 深度优先搜索(DFS)函数
// 参数:
// - graph: 图的邻接矩阵表示
// - visited: 记录每个顶点是否被访问过的布尔数组
// - v: 图中顶点的数量
// - start: 开始搜索的起始顶点
void DFS(int graph[MAX][MAX], bool visited[], int v, int start) {
    printf("%d ", start);  // 打印当前访问的顶点
    visited[start] = true; // 标记当前顶点为已访问

    // 遍历所有顶点,检查是否有未访问的相邻顶点
    for (int i = 0; i < v; i++) {
        // 如果存在边且该顶点未被访问,则递归调用DFS进行深度优先遍历
        if (graph[start][i] == 1 && !visited[i]) {
            DFS(graph, visited, v, i);
        }
    }
}

int main() {
    // 定义一个无向图的邻接矩阵表示
    int graph[MAX][MAX] = {
        {0, 1, 1, 0}, // 顶点0与顶点1和2相连
        {1, 0, 0, 1}, // 顶点1与顶点0和3相连
        {1, 0, 0, 1}, // 顶点2与顶点0和3相连
        {0, 1, 1, 0}  // 顶点3与顶点1和2相连
    };
    int vertices = 4;  // 图中的顶点数量
    bool visited[MAX] = {false};  // 初始化所有顶点为未访问状态

    // 打印从顶点0开始的深度优先搜索路径
    printf("从顶点 0 开始的深度优先搜索: ");
    DFS(graph, visited, vertices, 0);

    return 0;
}

3. 广度优先搜索(BFS)

原理:按层次从树或图的根节点向外扩展,先访问当前层的所有节点,再访问下一层。

比喻
广度优先搜索就像浇灌农田:你从水渠开始,第一步先灌溉水渠附近的农田(第1层节点),然后再扩散到稍远的农田(第2层节点),一步步扩展到整个农田。

场景
你在寻找朋友时,先找你认识的朋友(直接相连的第1层节点),再让他们帮你介绍他们的朋友(第2层节点),以此类推。

特点

时间复杂度:O(V+E)

优点:适合寻找最短路径问题。

缺点:需要额外的队列存储。

代码实现(C):

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>

#define MAX 100

// 广度优先搜索函数定义
// graph: 邻接矩阵表示的图
// v: 图中顶点的数量
// start: 起始顶点的索引
void BFS(int graph[MAX][MAX], int v, int start) {
    // 访问标记数组,初始化为false
    bool visited[MAX] = {false};
    // 队列,用于存储待访问的顶点
    int queue[MAX], front = 0, rear = 0;

    // 将起始顶点加入队列
    queue[rear++] = start;
    // 标记起始顶点为已访问
    visited[start] = true;

    // 当队列不为空时,继续遍历
    while (front < rear) {
        // 从队列中取出一个顶点
        int current = queue[front++];
        printf("%d ", current);

        // 遍历当前顶点的所有邻接顶点
        for (int i = 0; i < v; i++) {
            // 如果邻接顶点未被访问过
            if (graph[current][i] == 1 && !visited[i]) {
                // 将邻接顶点加入队列
                queue[rear++] = i;
                // 标记邻接顶点为已访问
                visited[i] = true;
            }
        }
    }
}

// 主函数
int main() {
    // 定义一个4x4的邻接矩阵,表示一个图
    int graph[MAX][MAX] = {
        {0, 1, 1, 0},
        {1, 0, 0, 1},
        {1, 0, 0, 1},
        {0, 1, 1, 0}
    };
    // 图中顶点的数量
    int vertices = 4;

    // 打印广度优先搜索的起始顶点
    printf("BFS starting from vertex 0: ");
    // 调用BFS函数,从顶点0开始遍历
    BFS(graph, vertices, 0);
    return 0;
}

排序和搜索算法是计算机科学的核心部分,无论是数据的组织还是问题的求解,都离不开它们。冒泡、快速、选择排序各有优势,适合不同的应用场景;而二分查找、深度优先搜索和广度优先搜索则提供了高效的数据搜索方式。在实际项目中,根据数据规模和需求选择合适的算法,能显著提升程序性能。理解这些基础算法,将为复杂问题的解决提供扎实的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值