群论习题集

1.hdoj多校 项链染色
3种颜色,相邻颜色不同,绿色不超过k种。
mlgbd莫比乌斯函数整半天发现整错了,整对ac之后,发现暴力求gcd两个跑不满的log也能过就很离谱了。
所以大致思路就是burnsid定理,找每种置换的不动点。
那么其实哈,对于项链转动k这个置换,其下的不动点相当于对长度gcd(k, n)这玩意求不转的不动点。
这玩意其实可以暴力求,大致思路就是对于有i个绿色的话(记gcd(k,n)=a)那么此时染色法就是 C a − i − 1 i − 1 C_{a-i-1}^{i-1} Cai1i1,暴力求的时候注意是否满足少于k种。
然后统计gcd个数即可,这个暴力和容斥都能过。
题解说的什么反演属实懒得看,逆天。
https://acm.hdu.edu.cn/showproblem.php?pid=6960

#include<bits/stdc++.h>
using namespace std;
#define N 1000009
#define LL long long
#define INF 0x3f3f3f3f
const int K = 998244353;
LL inv[N], jie[N], inj[N], tw[N], miu[N], mark[N];
void init(){
    tw[0] = 1;
    for(int i = 1; i < N; i++) tw[i] = 1ll * tw[i - 1] * 2 % K;
    inv[1] = 1;
    for(int i = 2; i < N; i++)
        inv[i] = 1ll * (K - K / i) * inv[K % i] % K;
    jie[0] = 1;
    for(LL i = 1; i < N; i++) jie[i] = 1ll * i * jie[i - 1] % K;
    inj[0] = 1;
    for(int i = 1; i < N; i++) inj[i] = 1ll * inv[i] * inj[i - 1] % K;
    for(int i = 1; i < N; i++) miu[i] = 1;
    for(int i = 2; i < N; i++){
        if(mark[N]) continue;
        miu[i] = -1;
        for(int j = 2; j * i < N; j++){
            mark[i * j] = 1;
            if(j % i == 0) miu[j * i] = 0;
            else miu[j * i] *= -1;
        }
    }
}
int C(int m, int n){
    return (1ll * jie[n] * inj[m] % K * inj[n - m]) % K;
}
void solve(){
    // cout << "round begin" << endl;
    LL n, k, ans = 0; cin >> n >> k;
    if(k > n) k = n;
    for(LL i = 2; i <= n; i++){
        if(n % i != 0) continue;
        LL cnt = 0;
        LL d = n / i;
        for(LL j = 1; j <= d; j++){
            // cnt += miu[j] * d / j;
            if(__gcd(j, d) == 1) cnt++;
        }
        if(!(i & 1)) ans = (ans + 2 * cnt) % K;
        for(LL j = 1; d * j <= k && j * 2 <= i; j++){
            ans = (ans + (((1ll * C(j - 1, i - j - 1) * tw[j] % K) * i % K) * inv[j] % K) * cnt) % K;
        }
    }
    ans = 1ll * ans * inv[n] % K; ans = (ans + K) % K;
    cout << ans << endl;
}
int main() {
	std::ios::sync_with_stdio(0); std::cin.tie(0);
    init();
    int T; cin >> T;
    while(T--) solve();
	return 0;
}
大家都是抱着对算法与数据结构极大的兴趣才参加集训的,我们也希望大家学有所成,但是刚刚接触信息学领域的同学往往存在很多困惑,不知道从何入手学习,在这篇向导里,我希望能将自己不多的经验与大家分享,希望对各位有所帮助. 一、语言是最重要的基本功 无论侧重于什么方面,只要是通过计算机程序去最终实现的竞赛,语言都是大家要过的第一道关.亚洲赛区的比赛支持的语言包括C/C++与JAVA.虽然JAVA在应用极为广泛,但是其运行速度不可恭维.而且在以往的比赛中来看,大多数队伍还是采用了C或者C++.而且C语言是大家接触的第一门编程语言,所以我们集训队都采用C和C++混编的方式写代码. 新来的同学可能C的基础知识刚刚学完,还没有接触过C++,其实在赛场上使用纯C的选手还是大有人在的,它们主要是看重了纯C在效率上的优势,所以这部分同学如果时间有限,并不需要急着去学习新的语言,只要提高了自己在算法设计上的造诣,纯C一样能发挥巨大的威力.但是我还是希望大家都能够学点C++. C++相对于C,在输入输出流上的封装大大方便了我们的操作,同时降低了出错的可能性,并且能够很好地实现标准流与文件流的切换,方便了调试的工作。如果有些同学比较在意这点,可以尝试C和C++的混编,毕竟仅仅学习C++的流操作还是不花什么时间的。 C++的另一个支持来源于标准模版库(STL),库中提供的对于基本数据结构的统一接口操作和基本算法的实现可以缩减我们编写代码的长度,这可以节省一些时间。但是,与此相对的,使用STL要在效率上做出一些牺牲,对于输入规模很大的题目,有时候必须放弃STL,这意味着我们不能存在“有了STL就可以不去管基本算法的实现”的想法;另外,熟练和恰当地使用STL必须经过一定时间的积累,准确地了解各种操作的时间复杂度,切忌对STL中不熟悉的部分滥用,因为这其中蕴涵着许多初学者不易发现的陷阱。像STL中的很多容器, vector,queue,stack,map,set等一定要比较熟悉,STL中的sort是必需要掌握的.掌握这些STL知识后写代码的时候相对于纯C会节省不少时间. C语言学习推荐:C程序设计(谭浩强编著) C++学习推荐: C++Prime, C++大学教程.(其实基本上的C++教程都行的…) STL学习推荐: C++Prime,STL标准库.(理论联系实际,边学就用学的最快) 二、以数学为主的基础知识十分重要 虽然被定性为程序设计竞赛,但是参赛选手所遇到的问题更多的是没有解决问题的思路,而不是有了思路却死活不能实现,这就是平时积累的基础知识不够。竞赛中对于基础学科的涉及主要集中于数学,此外对于物理、电路等等也可能有一定应用,但是不多。因此,大一的同学也不必为自己还没学数据结构而感到不知从何入手提高,把数学捡起来吧!下面来谈谈在竞赛中应用的数学的主要分支。 1、离散数学——作为计算机学科的基础,离散数学是竞赛中涉及最多的数学分支,其重中之重又在于图论和组合数学,尤其是图论。 图论之所以运用最多是因为它的变化最多,而且可以轻易地结合基本数据结构和许多算法的基本思想,较多用到的知识包括连通性判断、DFS和BFS,关节点和关键路径、欧拉回路、最小生成树、最短路径、二部图匹配和网络流等等。虽然这部分的比重很大,但是往往也是竞赛中的难题所在,如果有初学者对于这部分的某些具体内容暂时感到力不从心,也不必着急,可以慢慢积累。 竞赛中设计的组合计数问题大都需要用组合数学来解决,组合数学中的知识相比于图论要简单一些,很多知识对于小学上过奥校的同学来说已经十分熟悉,但是也有一些部分需要先对代数结构中的群论有初步了解才能进行学习。组合数学在竞赛中很少以难题的形式出现,但是如果积累不够,任何一道这方面的题目却都有可能成为难题。 2、数论——以素数判断和同余为模型构造出来的题目往往需要较多的数论知识来解决,这部分在竞赛中的比重并不大,但只要来上一道,也足以使知识不足的人冥思苦想上一阵时间。素数判断和同余最常见的是在以密码学为背景的题目中出现,在运用密码学常识确定大概的过程之后,核心算法往往要涉及数论的内容。 3、计算几何——计算几何相比于其它部分来说是比较独立的,就是说它和其它的知识点很少有过多的结合,较常用到的部分包括——线段相交的判断、多边形面积的计算、内点外点的判断、凸包等等。计算几何的题目难度不会很大,但也永远不会成为最弱的题。 4、线性代数——对线性代数的应用都是围绕矩阵展开的,一些表面上是模拟的题目往往可以借助于矩阵来找到更好的算法。 5、概率论——竞赛是以黑箱来判卷的,这就是说你几乎不能动使用概率算法的念头,但这也并不是说概率就没有用。关于这一点,只有通过一定的练习才能体会。而且近年来概率题出现的次数越来越多了. 6、初等数学与解析几何——这主要就是中学的知识了,用的不多,但是至少比高等数学多,我觉得熟悉一下数学手册上的相关内容,至少要知道在哪儿能查到,还是必要的。 7、高等数学——纯粹运用高等数学来解决的题目我接触的只有一道,但是一些题目的叙述背景往往需要和这部分有一定联系,掌握得牢固一些总归没有坏处。 以上就是竞赛所涉及的数学领域,可以说范围是相当广的。我认识的许多人去搞信息学的竞赛就是为了逼着自己多学一点数学,因为数学是一切一切的基础。 第二篇: 三、数据结构与算法是真正的核心 虽然数学十分十分重要,但是如果让三个只会数学的人参加比赛,我相信多数情况下会比三个只会数据结构与算法的人得到更为悲惨的结局。 先说说数据结构。掌握队列、堆栈和图的基本表达与操作是必需的,至于树,我个人觉得需要建树的问题有但是并不多。(但是树往往是很重要的分析工具)除此之外,排序和查找并不需要对所有方式都能很熟练的掌握,但你必须保证自己对于各种情况都有一个在时间复杂度上满足最低要求的解决方案。说到时间复杂度,就又该说说哈希表了,竞赛时对时间的限制远远多于对空间的限制,这要求大家尽快掌握“以空间换时间”的原则策略,能用哈希表来存储的数据一定不要到时候再去查找,如果实在不能建哈希表,再看看能否建二叉查找树等等——这都是争取时间的策略,掌握这些技巧需要大家对数据结构尤其是算法复杂度有比较全面的理性和感性认识。 接着说说算法。算法中最基本和常用的是搜索,主要是回溯和分支限界法的使用。这里要说的是,有些初学者在学习这些搜索基本算法是不太注意剪枝,这是十分不可取的,因为所有搜索的题目给你的测试用例都不会有很大的规模,你往往察觉不出程序运行的时间问题,但是真正的测试数据一定能过滤出那些没有剪枝的算法。实际上参赛选手基本上都会使用常用的搜索算法,题目的区分度往往就是建立在诸如剪枝之类的优化上了。 常用算法中的另一类是以“相似或相同子问题”为核心的,包括递推、递归、贪心法和动态规划。这其中比较难于掌握的就是动态规划,如何抽象出重复的子问题是很多题目的难点所在,笔者建议初学者仔细理解图论中一些以动态规划为基本思想所建立起来的基本算法(比如Floyd-Warshall算法),并且多阅读一些定理的证明,这虽然不能有什么直接的帮助,但是长期坚持就会对思维很有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值