推荐系统
文章平均质量分 72
古古怪怪狗
这个作者很懒,什么都没留下…
展开
-
推荐系统的架构
本文重点介绍一下推荐系统的技术框架,借用王喆老师常说的一句话:“不谋全局者,不足谋一域”。在学习推荐系统的过程中,我们需要建立自己的知识体系,总揽全局。必须要有一个像书中总结的推荐系统架构图一样的全局的技术框架在心中,只有这样,才能够提出全局最优的技术决策,和充分考虑各方利弊的技术权衡。 推荐系统中技术框架大体可以分为两个部分:数据部分和模型部分。 如下图所示: 数据部分主要负责“用户”“物品”“场景”的信息收集和处理。 推荐系统的模型部分是推荐系统的总体,模型的结构一般由召回层,排序层,和补充策略层组成。原创 2020-12-30 21:39:21 · 921 阅读 · 5 评论 -
推荐系统的分类
推荐系统的分类方式有很多种,在不同的资料中也给出了不同的分类方式。 我们可以获得的数据总体来说有三种:用户的信息,物品的信息,和用户的行为信息。按照获得数据的不同也可以将推荐系统分为三种:(1).基于人口统计学的推荐。(2).基于内容的推荐。(3).基于协同过滤的推荐。 基于人口统计学的推荐 当我们拿到用户的一些标签信息时,我们可以采用基于人口统计学的推荐,根据用户的特征可以找到与目标用户相似的用户,再根据相似用户的喜好对目标用户进行推荐。 ·基于人口统计学的推荐机制(Demographic-based R原创 2020-12-28 21:59:21 · 4493 阅读 · 4 评论 -
推荐系统经典算法——协同过滤
什么是协调过滤 协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息。顾名思义,就是协同大家的爱好,评论,兴趣等对海量的信息进行过滤的算法。 协调过滤是推荐系统中一种诞生最早,影响最大,应用最广泛的模型。 可以分为两大类,一类是基于用户的协同过滤(use-based)。另一种是基于物品的协同过滤算法(Item-based)。 基于用户的协同过滤 通过寻找与目标用户具有相同喜好的相似用户,在通过相似用户的其他喜好来推荐给目标用户的过程就是基于用户的协同过滤。 故基于用户的协同过滤一原创 2020-12-27 19:30:08 · 788 阅读 · 0 评论