浅谈欧拉定理

欧拉定理

若n,a为正整数,且n,a互质,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)
特别的φ(1)=1

欧拉函数性质

(1) p^k型欧拉函数:
若N是质数p(即N=p), φ(n)= φ(p)=p-p^(k-1)=p-1。若N是质数p的k次幂(即N=p^k),φ(n)=p^k-p^(k-1)=(p-1)p^(k-1)。


(2)mn型欧拉函数设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值。若m,n互质,φ(mn)=(m-1)(n-1)=φ(m)φ(n)。


(3)若n为奇数时,φ(2n)=φ(n)。对于任何两个互质 的正整数a,n(n>2)有:
a^φ(n)=1 mod n (恒等于)此公式即 欧拉定理当n=p 且 a与素数p互质(即:gcd(a,p)=1)则上式有: a^(p-1)=1 mod n (恒等于)此公式即 费马小定理


欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。


一个数的eular的代码实现
//时间复杂度O(n)
LL eular(LL n)
{
   LL res = n, a = n;
    for(LL i = 2; i*i<=a; i++) {
        if(a%i==0) {
            res = res/(i)*(i-1);
            while(a%i==0) a /= i;
        }
    }
    if(a>1) res=res/a*(a-1);
    return res;
}

求一个区间内的eular<筛法>
[1,n]

#include <bits/stdc++.h>
using namespace std;

#define LL long long
#define CLR(a,b) memset(a,(b),sizeof(a))

const int N = 1e6;
int phi[N];
void eular()
{
    CLR(phi,0);
    phi[1] = 1;
    for(int i = 2; i < N; i++) {
        for(int j = i; j < N; j+=i) {
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j]/i*(i-1);
        }
    }
    return ;
}
int main()
{
    eular();
    int n;
    cin>>n;
    for(int i = 1; i <= n; i++) printf("%d\n",phi[i]);
return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值