Codeforces #467 (Div. 2) C. Save Energy! ( 数学

C. Save Energy!

题目描述

Julia is going to cook a chicken in the kitchen of her dormitory. To save energy, the stove in the kitchen automatically turns off after k minutes after turning on.

During cooking, Julia goes to the kitchen every d minutes and turns on the stove if it is turned off. While the cooker is turned off, it stays warm. The stove switches on and off instantly.

It is known that the chicken needs t minutes to be cooked on the stove, if it is turned on, and 2t minutes, if it is turned off. You need to find out, how much time will Julia have to cook the chicken, if it is considered that the chicken is cooked evenly, with constant speed when the stove is turned on and at a constant speed when it is turned off.

输入

The single line contains three integers k, d and t (1 ≤ k, d, t ≤ 1018).

输出

Print a single number, the total time of cooking in minutes. The relative or absolute error must not exceed 10 - 9.

Namely, let’s assume that your answer is x and the answer of the jury is y. The checker program will consider your answer correct if .

样例

input
3 2 6
output
6.5
input
4 2 20
output
20.0

题意

一个电磁炉烹饪一只鸡 打开时候需要t时间 否怎需要2t时间
一次点火可以持续k时间 每经过d时间就检查一下电磁炉是否打开 问这只鸡煮熟的总时间

数学判定+二分查找最优时间

AC代码

#include <bits/stdc++.h>
using namespace std;

#define CLR(a,b) memset(a,(b),sizeof(a))
#define LL long long

const int MAXN = 1e3+10;
const double eps = 1e-15;
LL k, d, t, ans;
LL aa, bb;

bool check(double x)
{
    double a, b;
    LL p = (LL)x/ans;
    a = aa * p;
    b = bb * p;
    x -= ans * p;
    if(x <= aa)
        a += x;
    else
        a += aa, b += x-aa;
    return (a*2+b>=t*2);
}

int main()
{
    cin >> k >> d >> t;
    ans = d*((k+d-1)/d);
    aa = (k/d)*d+(k%d);
    bb = ans - aa;
    double l = 0.0, r = 3e18;
    for(int i = 1; i <= 100; i++) {
        double id = (l+r)/2;
        if(check(id))
            r = id;
        else
            l = id;
    }
    return 0*printf("%.15f\n",l);
}
题目描述 给定一棵 $n$ 个节点的树,每个节点都有一个权值 $w_i$。你需要删去树上的一些边,使得剩下的每个连通块中,所有节点的权值之和不超过 $k$。 求最多能删去多少条边。 输入格式 第一行包含两个整数 $n,k$。 第二行包含 $n$ 个整数 $w_1,w_2,\cdots,w_n$。 接下来 $n-1$ 行,每行包含两个整数 $a,b$,表示节点 $a$ 和节点 $b$ 之间有一条边。 输出格式 输出一个整数,表示最多能删去的边数。 数据范围 $1\le n \le 10^5$ $1 \le k,w_i \le 10^9$ 输入样例1: 5 6 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例1: 2 输入样例2: 5 3 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例2: 0 算法1 (dfs) $O(n)$ 首先我们可以想到暴力的做法,即对于每个连通块,暴力枚举删去哪些边,尝试得到最多的删边数。那么如何求解一个连通块内的所有节点权值之和呢?我们可以使用 DFS 遍历树,对于每个节点,求出其子树内所有节点的权值之和,那么以该节点为根的子树内的所有节点权值之和就是该节点自身的权值加上其所有子节点的权值之和。 对于每个连通块,我们枚举该连通块内任意两个节点 $x,y$。如果 $x$ 与 $y$ 之间的路径上的所有边都被删去了,那么 $x$ 和 $y$ 就会分别成为两个新的连通块,这两个新的连通块内所有节点的权值之和都不超过 $k$。因此我们只需要枚举所有的 $x,y$ 对,对于每个 $x,y$ 对尝试删去它们之间的路径上的所有边,看是否能够让 $x$ 和 $y$ 成为两个新的连通块,进而更新答案即可。 时间复杂度 参考文献 python3 代码 算法2 (暴力枚举) $O(n^2)$ blablabla 时间复杂度 参考文献 C++ 代码 class Solution { public: const int N = 1e5+10; int n,k; int h[N],e[N<<1],ne[N<<1],idx; int w[N]; int sum[N]; bool st[N]; int res; void add(int a,int b) { e[idx] = b,ne[idx] = h[a],h[a] = idx++; } void dfs(int u,int father) { sum[u] = w[u]; for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs(j,u); sum[u] += sum[j]; } } void dfs2(int u,int father) { for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs2(j,u); if(sum[j] <= k) res++; else if(sum[u] - sum[j] <= k) res++; } } void solve() { cin >> n >> k; memset(h,-1,sizeof(h)); for(int i=1;i<=n;i++) cin >> w[i]; for(int i=1;i<n;i++) { int a,b; cin >> a >> b; add(a,b); add(b,a); } dfs(1,-1); dfs2(1,-1); cout << res << endl; } }; int main() { Solution().solve(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值