树剖模板
数组含义
f
[
u
]
f[u]
f[u] 保存结点
u
u
u的父亲节点
d
[
u
]
d[u]
d[u] 保存结点
u
u
u的深度值
s
z
[
u
]
sz[u]
sz[u] 保存以
u
u
u为根的子树节点个数
s
o
n
[
u
]
son[u]
son[u] 保存重儿子
r
k
[
u
]
rk[u]
rk[u] 保存当前
d
f
s
dfs
dfs标号在树中所对应的节点或者值
t
o
p
[
u
]
top[u]
top[u] 保存当前节点所在链的顶端节点
i
d
[
u
]
id[u]
id[u] 保存树中每个节点剖分以后的新编号(
D
F
S
DFS
DFS的执行顺序)
树剖中关键的两次 D F S DFS DFS,可以求出以上的数组的值,
第一次 D F S 1 DFS1 DFS1 可以把那个 f [ u ] f[u] f[u], s z [ u ] sz[u] sz[u], s o n [ u ] son[u] son[u], d [ u ] d[u] d[u]
void dfs1(int u, int fa, int dep){
f[u]=fa, d[u]=dep, sz[u]=1;
rep(i,0,SZ(E[u])){
int v=E[u][i];
if(v==fa) continue;
dfs1(v,u,dep+1);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]]) son[u] = v;
}
}
第二次 D F S 2 DFS2 DFS2 可以把那个 i d [ u ] id[u] id[u], t o p [ u ] top[u] top[u], r k [ u ] rk[u] rk[u]
void dfs2(int u,int t){
top[u]=t;
id[u]=++cnt;
rk[cnt]=a[u];
if(!son[u]) return;
dfs2(son[u],t);
rep(i,0,SZ(E[u])){
int v=E[u][i];
if(v!=son[u]&&v!=f[u]) dfs2(v,v);
}
}
一共七个值,求出来之后 我们就可以直接剖分 用数据结构来 x j b xjb xjb搞搞了
//
// Created by Yishui on 2018/9/15.
//
#include <bits/stdc++.h>
using namespace std;
#define cpp_io() {ios::sync_with_stdio(false); cin.tie(NULL);}
#define rep(i,a,n) for (int i=a;i<n;i++)
#define repp(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define CLR(a,b) memset(a,(b),sizeof(a))
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ls o<<1
#define rs o<<1|1
typedef long long ll;
typedef vector<int> VI;
const int MAXN = (int)2e5+10;
const int INF = 0x3f3f3f3f;
const int mod = (int)1e9+7;
struct node{
int l,r;
int lazy,x;
int len;
}t[MAXN<<2];
int n,m,p;
int cnt;
int f[MAXN], d[MAXN], sz[MAXN], son[MAXN], rk[MAXN], top[MAXN], id[MAXN];
vector<int> E[MAXN];
int a[MAXN];
void push_down(int o){
if(t[o].lazy){
t[ls].x=(t[ls].x+t[ls].len*t[o].lazy)%p;
t[rs].x=(t[rs].x+t[rs].len*t[o].lazy)%p;
t[ls].lazy=(t[o].lazy+t[ls].lazy)%p;
t[rs].lazy=(t[o].lazy+t[rs].lazy)%p;
t[o].lazy=0;
}
}
void build(int l,int r,int o) {
t[o].l=l,t[o].r=r;t[o].len=r-l+1;t[o].lazy=0;
if(l==r){
t[o].x=rk[l]; return ;
}
int mid=(l+r)>>1;
build(l,mid,ls); build(mid+1,r,rs);
t[o].x=(t[ls].x+t[rs].x)%p;
}
inline void update(int l,int r, int o, int x) {
if(t[o].l>=l&&t[o].r<=r) {
t[o].x=(t[o].x+t[o].len*x)%p;
t[o].lazy=(t[o].lazy+x)%p;
return;
}
push_down(o);
int mid=(t[o].l+t[o].r)>>1;
if(r<=mid) update(l,r,ls,x);
else if(l>mid) update(l,r,rs,x);
else {
update(l,mid,ls,x); update(mid+1,r,rs,x);
}
t[o].x = (t[ls].x+t[rs].x)%p;
}
inline int query(int l,int r,int o){
if(t[o].l>=l&&t[o].r<=r) return t[o].x;
push_down(o);
int mid=(t[o].l+t[o].r)>>1;
if(r<=mid) return query(l,r,ls)%p;
else if(l>mid) return query(l,r,rs)%p;
else
return (query(l,mid,ls)%p+query(mid+1,r,rs)%p)%p;
}
// 树上操作-----------------------------
void dfs1(int u, int fa, int dep){
f[u]=fa, d[u]=dep, sz[u]=1;
rep(i,0,SZ(E[u])){
int v=E[u][i];
if(v==fa) continue;
dfs1(v,u,dep+1);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]]) son[u] = v;
}
}
void dfs2(int u,int t){
top[u]=t;
id[u]=++cnt;
rk[cnt]=a[u];
if(!son[u]) return;
dfs2(son[u],t);
rep(i,0,SZ(E[u])){
int v=E[u][i];
if(v!=son[u]&&v!=f[u]) dfs2(v,v);
}
}
void add_lca(int x,int y,int z) {
while(top[x]!=top[y]) {
if(d[top[x]]<d[top[y]]) swap(x,y);
update(id[top[x]],id[x],1,z);
x=f[top[x]];
}
if(d[x]>d[y])swap(x,y);
update(id[x],id[y],1,z);
}
int query_lca(int x,int y){
int ans=0;
while(top[x]!=top[y]){
if(d[top[x]]<d[top[y]]) swap(x,y);
ans=(ans+query(id[top[x]],id[x],1))%p;
x=f[top[x]] ;
}
if(d[x]>d[y]) swap(x,y);
ans=(ans+query(id[x],id[y],1))%p;
return ans;
}
int main() {
cpp_io();
int r;
cin>>n>>m>>r>>p;
repp(i,1,n) cin>>a[i];
rep(i,1,n) {
int u,v; cin>>u>>v;
E[u].pb(v); E[v].pb(u);
}
cnt=0;
dfs1(r,0,1); dfs2(r,r);
build(1,n,1);
while(m--){
int op,x,y,z;
cin>>op;
if(op==1) {
cin>>x>>y>>z;
add_lca(x,y,z);
}
if(op==2) {
cin>>x>>y;
cout<<query_lca(x,y)<<endl;
}
if(op==3) {
cin>>x>>z;
update(id[x],id[x]+sz[x]-1,1,z%p);
}
if(op==4) {
cin>>x;
cout<<query(id[x],id[x]+sz[x]-1,1)%p<<endl;
}
}
return 0;
}