P3384 【模板】树链剖分

树剖模板

数组含义
f [ u ] f[u] f[u] 保存结点 u u u的父亲节点
d [ u ] d[u] d[u] 保存结点 u u u的深度值
s z [ u ] sz[u] sz[u] 保存以 u u u为根的子树节点个数
s o n [ u ] son[u] son[u] 保存重儿子
r k [ u ] rk[u] rk[u] 保存当前 d f s dfs dfs标号在树中所对应的节点或者值
t o p [ u ] top[u] top[u] 保存当前节点所在链的顶端节点
i d [ u ] id[u] id[u] 保存树中每个节点剖分以后的新编号( D F S DFS DFS的执行顺序)

树剖中关键的两次 D F S DFS DFS,可以求出以上的数组的值,

第一次 D F S 1 DFS1 DFS1 可以把那个 f [ u ] f[u] f[u], s z [ u ] sz[u] sz[u], s o n [ u ] son[u] son[u], d [ u ] d[u] d[u]

void dfs1(int u, int fa, int dep){
    f[u]=fa, d[u]=dep, sz[u]=1;
    rep(i,0,SZ(E[u])){
        int v=E[u][i];
        if(v==fa) continue;
        dfs1(v,u,dep+1);
        sz[u]+=sz[v];
        if(sz[v]>sz[son[u]]) son[u] = v;
    }
}

第二次 D F S 2 DFS2 DFS2 可以把那个 i d [ u ] id[u] id[u], t o p [ u ] top[u] top[u], r k [ u ] rk[u] rk[u]

void dfs2(int u,int t){
    top[u]=t;
    id[u]=++cnt;
    rk[cnt]=a[u];
    if(!son[u]) return;
    dfs2(son[u],t);
    rep(i,0,SZ(E[u])){
        int v=E[u][i];
        if(v!=son[u]&&v!=f[u]) dfs2(v,v);
    }
}

一共七个值,求出来之后 我们就可以直接剖分 用数据结构来 x j b xjb xjb搞搞了

//
// Created by Yishui on 2018/9/15.
//
#include <bits/stdc++.h>
using namespace std;

#define cpp_io() {ios::sync_with_stdio(false); cin.tie(NULL);}
#define rep(i,a,n) for (int i=a;i<n;i++)
#define repp(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define CLR(a,b) memset(a,(b),sizeof(a))
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ls o<<1
#define rs o<<1|1


typedef long long ll;
typedef vector<int> VI;
const int MAXN = (int)2e5+10;
const int INF = 0x3f3f3f3f;
const int mod = (int)1e9+7;

struct node{
    int l,r;
    int lazy,x;
    int len;
}t[MAXN<<2];
int n,m,p;
int cnt;
int f[MAXN], d[MAXN], sz[MAXN], son[MAXN], rk[MAXN], top[MAXN], id[MAXN];
vector<int> E[MAXN];
int a[MAXN];

void push_down(int o){
    if(t[o].lazy){
        t[ls].x=(t[ls].x+t[ls].len*t[o].lazy)%p;
        t[rs].x=(t[rs].x+t[rs].len*t[o].lazy)%p;
        t[ls].lazy=(t[o].lazy+t[ls].lazy)%p;
        t[rs].lazy=(t[o].lazy+t[rs].lazy)%p;
        t[o].lazy=0;
    }
}
void build(int l,int r,int o) {
    t[o].l=l,t[o].r=r;t[o].len=r-l+1;t[o].lazy=0;
    if(l==r){
        t[o].x=rk[l]; return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,ls); build(mid+1,r,rs);
    t[o].x=(t[ls].x+t[rs].x)%p;
}
inline void update(int l,int r, int o, int x) {
    if(t[o].l>=l&&t[o].r<=r) {
        t[o].x=(t[o].x+t[o].len*x)%p;
        t[o].lazy=(t[o].lazy+x)%p;
        return;
    }
    push_down(o);
    int mid=(t[o].l+t[o].r)>>1;
    if(r<=mid) update(l,r,ls,x);
    else if(l>mid) update(l,r,rs,x);
    else {
        update(l,mid,ls,x); update(mid+1,r,rs,x);
    }
    t[o].x = (t[ls].x+t[rs].x)%p;
}
inline int query(int l,int r,int o){
    if(t[o].l>=l&&t[o].r<=r) return t[o].x;
    push_down(o);
    int mid=(t[o].l+t[o].r)>>1;
    if(r<=mid) return query(l,r,ls)%p;
    else if(l>mid) return query(l,r,rs)%p;
    else
        return (query(l,mid,ls)%p+query(mid+1,r,rs)%p)%p;
}
// 树上操作-----------------------------
void dfs1(int u, int fa, int dep){
    f[u]=fa, d[u]=dep, sz[u]=1;
    rep(i,0,SZ(E[u])){
        int v=E[u][i];
        if(v==fa) continue;
        dfs1(v,u,dep+1);
        sz[u]+=sz[v];
        if(sz[v]>sz[son[u]]) son[u] = v;
    }
}
void dfs2(int u,int t){
    top[u]=t;
    id[u]=++cnt;
    rk[cnt]=a[u];
    if(!son[u]) return;
    dfs2(son[u],t);
    rep(i,0,SZ(E[u])){
        int v=E[u][i];
        if(v!=son[u]&&v!=f[u]) dfs2(v,v);
    }
}
void add_lca(int x,int y,int z) {
    while(top[x]!=top[y]) {
        if(d[top[x]]<d[top[y]]) swap(x,y);
        update(id[top[x]],id[x],1,z);
        x=f[top[x]];
    }
    if(d[x]>d[y])swap(x,y);
    update(id[x],id[y],1,z);
}
int query_lca(int x,int y){
    int ans=0;
    while(top[x]!=top[y]){
        if(d[top[x]]<d[top[y]]) swap(x,y);
        ans=(ans+query(id[top[x]],id[x],1))%p;
        x=f[top[x]] ;
    }
    if(d[x]>d[y]) swap(x,y);
    ans=(ans+query(id[x],id[y],1))%p;
    return ans;
}
int main() {
    cpp_io();
    int r;
    cin>>n>>m>>r>>p;
    repp(i,1,n) cin>>a[i];
    rep(i,1,n) {
        int u,v;  cin>>u>>v;
        E[u].pb(v); E[v].pb(u);
    }
    cnt=0;
    dfs1(r,0,1); dfs2(r,r);
    build(1,n,1);
    while(m--){
        int op,x,y,z;
        cin>>op;
        if(op==1) {
            cin>>x>>y>>z;
            add_lca(x,y,z);
        }
        if(op==2) {
            cin>>x>>y;
            cout<<query_lca(x,y)<<endl;
        }
        if(op==3) {
            cin>>x>>z;
            update(id[x],id[x]+sz[x]-1,1,z%p);
        }
        if(op==4) {
            cin>>x;
            cout<<query(id[x],id[x]+sz[x]-1,1)%p<<endl;
        }
    }
    return 0;
}






















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值